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Abstract

Aircraft course planning between two points in a clear, no threat environment

is easy and straightforward. However, the addition of various threats can greatly in-

crease the difficulty and complexity of course planning. Placing new waypoints along

the edge of each threat, mostly skirting the dangerous environment, may not prove

too difficult, but such courses are far from optimal. Given aircraft, environment, and

time constraints it is likely a much more optimal path exists between any given start

and end points. This research focuses on determining the feasibility of using the Gen-

eral Pseudospectral Optimization Software program files written for the MATLAB R©

software package to take a given path, optimize it for the environment, and output a

flyable, optimized course that can be used for more detailed mission planning. The

results showed creating such a code was feasible. GPOPS can handle a simple version

of what could be a very complex optimization problem. Two different versions of the

final code show the successful optimization of the problem when the model is kept

simple, and the failures GPOPS experiences when the problem becomes too complex.
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AIRCRAFT COURSE OPTIMIZATION TOOL

USING GPOPS MATLAB CODE

I. Introduction

The art of aircraft course planning has existed since the first aircraft took flight.

While planning for those first flights focused more on safely getting up and down alive,

today’s military aircraft must contend with a myriad of issues ranging from politically

motivated “no-fly zones” to advanced radar arrays to simple shoulder mounted RPGs.

Designing a course that safely navigates the dangers of a combat zone, while still

quickly and efficiently fulfilling mission objectives, is an imperative that can quickly

become a major bottleneck for mission planners. The ability to take a rough idea

for an aircraft course and quickly optimize it would improve mission planning times

greatly.

This quickly generated optimized path is not meant as a perfect flightpath. It

may not, in reality, be truly optimal - it is only mathematically optimal for the infor-

mation provided to the system that created it, and what is best in the mathematical

realm can greatly differ from the real world. Far more detailed analyses, not to men-

tion the input of human mission planners, would be required for any quickly generated

path described here to be deemed acceptable. This does not mean computer code to

find this optimum path is useless in the real world, it just means that what it outputs

is only a starting point.

The objective of this research is to test the feasibility, usability, and effectiveness

of a General Pseudospectral Optimization Software (GPOPS) based aircraft course

optimizer. To that end, the Aircraft Course Optimization Tool (ACOT) was created.

Composed of MATLAB R© scripts and revolving around GPOPS, ACOT creates the

framework defining the problem in a way GPOPS can use to find a minimum cost

course for a given set of aircraft characteristics, threat conditions, and environment
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constraints. The goal is to produce an output that matches the needs discussed

above with a reasonable degree of realism, including the inclusion of multiple radars,

different power radars, simplified aircraft dynamics, and a nominal aircraft radar

cross sections. While this output may not necessarily be of the highest fidelity, it is

hopefully produced much more quickly by ACOT than by a person sitting at a table.

The next several chapters will discuss ACOT, its foundations, and its result in

a way that explains its purpose and results. While nothing exactly like ACOT has

been done before, there are other research areas which addressed similar issues and

created solutions that run parallel to the same area as ACOT, but differ in various

ways.

The majority of the thesis work focuses on ACOT itself since its creation was

tantamount to determining the problem’s feasibility. To start with, the large ma-

jority of the calculations take place inside the GPOPS scripts, created by Dr. Anil

V. Rao at the University of Florida, and Standford University’s Sparse Nonlinear

OPTimizer(SNOPT) solver. The addition of several ACOT specific scripts frame the

problem to the GPOPS code in the format it requires for all optimization calculations.

These ACOT scripts set the optimization’s differential equations of motion, its cost

function, and the initial conditions to begin the optimization. Around these ACOT

specific scripts a large shell code acts as a intermediary between the inner workings

of ACOT and any end user, or more specifically a Graphical User Interface (GUI)

with which the end-user interacts. That GUI, however, is not directly part of this

thesis and all work was done through the shell code. As a whole, these scripts take

in some basic information about the aircraft flying the course, the initial and final

positions of the aircraft, the position and relevant strength information of any radars

in the operating area, and a user provided initial path guess. This information is used

inside GPOPS to find the minimum cost of a course based primarily on the amount

of exposure to radars, but also the dynamic forces imposed by aircraft maneuvers, the

mission’s time of flight, and any no-fly/exclusion zones that may exist around specific

areas.
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Following a discussion of how ACOT works, the thesis looks at several different

runs of the software to demonstrate some of ACOT’s capabilities and limitations. As

mentioned before, the output goal is meant to be a “quick and dirty” solution from

which to begin a more detailed analysis. The output, while technically flyable by an

aircraft, cannot be called mission ready.
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II. Background

There are two major components to understanding the Aircraft Course Optimization

Tool. The first part is a somewhat detailed grasp of what the tool, this thesis, is

meant to accomplish. The second is a basic understanding of General Pseudospectral

Optimization Software. Before those however, it is important to understand the

general trajectory optimization problem. Several papers have discussed this problem,

and many have solved problems similar to the Aircraft Course Optimization Tool,

but none have directly discussed ACOT’s specific topic.

2.1 Trajectory Optimization Studies

Work on aircraft course optimization has a long history. Over the past decade

several people have looked at different models and methods for solving various prob-

lems of this type. A recent development in this area has been the use of systems

like GPOPS, but other numerical and analytic solutions methods have been looked

at before.

Michael Novy’s thesis, Air Vehicle Optimal Trajectories for Minimization of

Radar Exposure, looked at several of the underlying ideas behind ACOT. More specif-

ically, Novy’s thesis analyzed the various methods of solving radar exposure problems

and compared some of the possible outcomes they produced. The dynamic nature of

ACOT prevent the use of the analytic techniques Novy discussed, but his overview of

optimal control directly corresponds to the method ACOT uses in its solution [3].

One interesting topic Novy discusses is the use of Voronoi diagrams in the im-

plementation of optimal path planning through radar fields. In the context of radar

fields, Voronoi paths are a geometrical method of finding the best path through a

given field, assuming the location and powers of all radars are fully known. Further-

more, assuming all radars are of equal power, a Voronoi path will lie along the edges

of geometrics shapes whos sides are all equidistant from neighboring radars. In the

case of two radars, for example, the Voronoi path will be a perpendicular bisector to

a line connecting the positions of the two radars [1, 3].
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Jeffery Herbert, in his dissertation Air Vehicle Path Planning, also addresses

the Voronoi path idea and provides an excellent image, reproduced below in Figure

2.1, that demonstrates the geometric shapes discussed above [1].

Figure 2.1: Voronoi diagram example from Herbert Dissertation [1]

Herbert also discusses, and then greatly expands on, the topics Novy discussed

in his thesis. Not only does Herbert mention single vehicle path planning for single and

multiple radars, but he analyses multiple vehicle control, a topic of great interest to

ACOT but which at the current time has proven infeasible due to coding limitations.

As it currently stands, the topics discussed by Herbert provide an excellent roadmap

for ACOT and programs like it to follow. However, while ACOT is still successful

in the problem it is trying to solve, it is unable to reach the levels of detail and

open-ended nature of the problems discussed by Herbert [1].

One major source of information during early work on ACOT came from Hybrid

Gauss Pseudospectral and Generalized Polynomial Chaos Algorithm to Solve Stochas-

tic Trajectory Optimization Problems by Gerald Cottrill [4]. Discussing several dif-

ferent methods of optimization, and applying them to a basic trajectory optimization

problem, Cottrill provided a framework defining the general problem ACOT should
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solve. In the paper, Cottrill defined a 2-D problem where an aircraft attempts to move

from an initial point to another in an area with potential threats. The problem’s ob-

jective was to find a path through those risks while minimizing the probability of the

aircraft being killed by the previously mentioned threats. Furthermore, the threats

themselves were assumed to have had a confirmed location at some point in time, but

since then may have changed, e.g. an interceptor aircraft on patrol. This creates a

probability distribution the aircraft must navigate through.

While ACOT eventually incorporated a more complex set of dynamics, early

work focused on Cottrill’s dynamics as seen in Equations 2.1, 2.2, 2.3.

ẋ1 = V cos(θ(t)) (2.1)

ẋ2 = V sin(θ(t)) (2.2)

θ̇ = u(t) (2.3)

where the vector x̄ represents the x and y states (x1 and x2), V the velocity, and

u the control variable that the optimization algorithm can modify to find the opti-

mum solution. These dynamics required a constant speed assumption for the aircraft

velocity and a control variable bound by the relationship

|u| = V

Rmin

(2.4)

where Rmin is a predefined minimum turn radius [4].

The optimization requires a cost function to operate. Cottrill’s cost function, of

the basic form seen in Equation 2.5, uses the probability distribution produced by the

uncertainty of threat positions and the time of flight, to determine the flightpath’s

cost. Once provided to an optimizer, these cost functions are used with the dynamics

to find the flightpath that minimizes the aircraft’s exposure to threats [4].
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J = φ (x (tf )) +

∫ t0

tf

L(x̄, ū, t)dt (2.5)

where φ (x (tf )) determines the cost value for the final time state and L(x̄, ū, t) cal-

cuates the cost of the continious portion of the optimization based on the state and

control.

Another paper related to the research herein Timothy Jorris and Richard Cobb’s

paper 2-D Trajectory Optimization Satisfying Waypoints and No-Fly Zone Constraints

[5]. A similar concept to Cottrill’s paper, this paper focused on a specific problem

rather than various ways to solve a simple, general problem. As the paper explains,

the Global Strike mission requires getting a hypersonic aircraft to a target in a mini-

mum time while hitting required waypoints and avoiding prohibited areas. Clearly an

optimization problem, Jorris goes through the development of the dynamics and cost

function required for any optimizer. While in theory ACOT could be used to solve a

problem such as this, Jorris’ dynamics are normalized to values that match a hyper-

sonic vehicle’s operating regime, including both high speed and extreme altitude [5].

By analyzing Jorris’ dynamics and combining them with the concepts discussed

in Annex A, Section 3 of Risk Management Plan for the Fleeting Target Technology

Demonstrator ACOT’s dynamics developed their current form. This last paper dis-

cussed how an unmanned aerial system (UAS) with a fixed sensor could keep a target

in its line of sight. In its discussion, the paper developed concepts which proved useful

when creating ACOT’s dynamics, such as assuming coordinated turns and using that

assumption to relate load factor to bank angle and the increased load factor translates

directly to a tighter turn [6].

2.2 General Pseduospectral Optimization Software

The General Pseduospectral Optimization Software created by Dr. Avil V. Rao

from the University of Florida is a collection of MATLAB R© scripts that work together

to find the local minimum of a user provided cost function for a given set of differential
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equations. While GPOPS is at the heart of ACOT, its inner workings are not the

focus of this research. Because of that this paper will not delve deeply into those

working and will instead refer the reader to GPOPS specific documents [7].

Though not analysing GPOPS completely, it is prudent to describe the basics

of General Pseduospectral methods and how GPOPS in particular uses them. First

and foremost, GPOPS is a numerical solver. With Standford’s Sparse Nonlinear

Optimizer (SNOPT) at its core, GPOPS performs a gradient-based search to find

the optimum solution to the problem provided to it. GPOPS and SNOPT iterate

until the gradient search appears to have found a local minimum. Local minimum

is used specifically here because the gradient-based method is not guaranteed to find

the global minimum of a provided cost function, it can only find the closest minimum

to the provided initial conditions [8].

The actual process is, of course, much more complex than described in the

preceding paragraph and in reality relies heavily on the pseduospectral portion of

GPOPS’ name. More specifically GPOPS uses the Radau Pseudospectral Method that

places additional collocation points at the best locations along the path to improve

the quality and speed of the optimization. A detailed description of this method is

beyond the scope of this thesis, but further imformation is avaliable in the GPOPS

and SNOPT manuals. Suffice it to say, GPOPS uses internal algorithms to determine

what points along a path it should focus on in order to best discretize the problem [8,9].

The final GPOPS code is a compilation of several dozen different MATLAB R©

scripts. The user, however, does not interact with the majority of these scripts but

instead writes three to four scripts that define the problem in a way GPOPS, and

thus SNOPT, understands. The first required script is the main script that sets up

the initial conditions, limits, and first guess for GPOPS to start the problem with.

The second is a script containing the problem’s differential algebraic equations (dae),

commonly referred to as the dae script. For problems such as those solved in ACOT,

these are the differential equations of motion. In linear problems they are of the
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standard form

ẋ = Ax+Bu (2.6)

but, as can be inferred from the descriptions of GPOPS and SNOPT above, these

differential equations need not be linear and instead take the form:

ẋ = f(x̄, ū, t) (2.7)

Furthermore, the dae script also contains the calculations for any path constrains

placed upon the problem - the values for which are defined in the Main script. These

path constraints define areas in the solution space that the solution can not take.

The third required script contains the cost function of the problem, the set

of equations that make GPOPS the optimization software it is. The cost functions

contained inside are what GPOPS attempts to minimize during its run, typically of

the form show in Equation 2.5 above and 2.8 here.

J = φ (x (tf )) +

∫ t0

tf

L(x̄, ū, t)dt (2.8)

where φ is the final state cost and L is the Lagrangian cost for the entire optimization

problem. This cost function is calculated subject to the constraints and dynam-

ics specificed as part of the dae script. The explicit time variant component, t, in

Equations 2.7 and 2.8 are not required, and are not used in ACOT as this aircraft

course optimization problem is kept as a nonlinear, time invariant problem that is

only implicitly a function of time.

It must be stated the purpose of this thesis is not to analyze and discuss op-

timization and the math behind it, but instead to focus on a specific optimization

problem. To that end, details about GPOPS and optimization can be found in refer-

enced documents [4, 7, 8].
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2.3 Aircraft Course Optimization Tool

The previous sections and their ideas combine with the complexity of mission

planning to produce the problem ACOT attempts to solve. As the battlefield con-

tinues to change with the advent of new technologies it is becoming more and more

difficult for people alone to properly take into consideration all those factors, at least

in a reasonable amount of time. The Aircraft Course Optimization Tool is meant

to ease the load on human mission planners by allowing them to input some basic

information about the aircraft they are planing for and the threat environment into

which the aircraft is heading and get an optimized solution as the output.

As with Jorri’s paper, mentioned in Chapter II, the threats ACOT focuses on

are those from stationary radar sites, though technically any circular threat area could

be created and deemed a no-fly or high risk area. By looking at the properties of the

aircraft, the given threats, and any provided time constraints, ACOT calculates the

lowest threat path that meets all constraints.

The output from ACOT is not meant as a final product which can be given

to pilots as part of their mission brief. Instead the output is created with further

analysis in mind. So while an aircraft could fly the path ACOT creates, the output

is meant to be used in conjunction with other threat analysis software. This higher

fidelity software is much better able to analyze just how much of a threat the aircraft

will encounter for all possible threats, not just the radars or other arbitrary threat

rings ACOT considers. To do its analysis this high fidelity software requires a course

to analyze. That is the course ACOT creates. The bottom line is that ACOT does

not produce an end product, but creates something that is a stepping stone along

the way. It is meant to aid in the work of human mission planners and their advance

tools, not replace them.
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III. Methodology

3.1 Early Development

The goal of this thesis is to determine the feasibility of using GPOPS, and thus

the built in SNOPT, to determine the optimum course for an aircraft around various

threats. The earliest development towards that goal revolved around properly framing

the problem. In its most basic form, the problem was a standard optimization issue in

which a cost function would be minimized subject to various constraints. As ACOT

grew, so did the number and types of constraints. The cost function also changed with

time, starting simple and eventually growing to something much more complex. In the

end, this approach produced to distinct versions of ACOT, a Three Component State

Vector (TCSV) version and a (FCSV) version. Sections 3.2 and 3.3 below talk about

the development of both, while Chapter IV delves into what results they produce.

3.2 Three Component State Vector

The earliest working versions of ACOT consisted of a simple three component

state vector, Equation 3.1, and their associated dynamics, Section 3.2.1. At first the

problem was left without a cost function, instead relying on constrained no-fly zones.

Once those simple problems demonstrated the code and dynamics worked, a cost

function was developed and added to the problem, Section 3.2.2.

3.2.1 TCSV Dynamics. The TCSV dynamics are taken directly from Cot-

trill’s work in Hybrid Gauss Pseduospectrol and Generalized Polynomial Chaos Algo-

rithm to Solve Stochastic Trajectory Optimization Problems [4]. Both his state vector

and dynamics are shown below in Equations 3.1, 3.2, 3.3, and 3.4.

η̄ =


x

y

θ

 (3.1)
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in which x is the x-position, y is the y-position, and θ is the aircraft heading. In

ACOT’s case ,the x-axis is also referenced as East, while the y-axis is North, since all

plots are shown in the navigation frame used by pilots and navigators.

The TCSV dynamics, 3.2, 3.3, and 3.4, rely on simple planar geometry.

η̇1 = V cos(η3) (3.2)

η̇2 = V sin(η3) (3.3)

η̇3 = u(t) (3.4)

In the dynamics V is the user set constant velocity while u is the control variable

controlled by GPOPS and SNOPT. In the case of the three state dynamics the control

vector is bound by the value calculated from Equation 3.5 below.

ubounds = ± V

Rturn

(3.5)

where V is the user defined constant velocity and Rturn the set turn radius.

For the simple TCSV model, the constant velocity and constant turn radius are

two of the three aircraft properties the user must define. The third is the circular

radar cross section that is used in the radar equation, Equation 3.8, in Section 3.2.2

below.

While not technically part of the dynamics equations, GPOPS considers both

the dynamics and hard constraints at the same time during its optimization run. The

only active path constraints in the middle of the course are those defining up exclusion

zones around radars or any other point on the map the aircraft must completely avoid.

To do that, the code uses Equation 3.6 to calculate the distance from the aircraft to

the center of each exclusion zone and checks that value with the hard constraint. If
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the distance is less than the hard constraint, then the course is infeasible.

R2 = (x− xRn)2 + (y − yRn)2 (3.6)

3.2.2 TCSV Cost. The cost function for the TCSV model consists of three

parts. The first part is the final time, which is used in the Mayer component of the

cost function. The final two parts compose the Lagrange cost and calculate the costs

incurred due to radars and any control usage.

The Mayer takes the simple form in Equation 3.7 where JM represents the Mayer

function value and tf is the time it took the aircraft to fly the optimized course.

JM = 10tf (3.7)

The 10 multiple weight on the cost was chosen because it worked well for the simple

example problems used to test the code. It is expected that better values for this

weight exist, but it is up to any end user as to what weights are needed for their

specific problems.

The radar cost is based on the two way radar equation, Equation 3.8.

SNR =
PD
PR

=
PSGSσTGMλ

2

(4π)3R4(kTBM)L
(3.8)

The variables for Equation 3.8 are defined in Table 3.1 [2].

As is clear both in Equation 3.8 and Table 3.1 this equation can prove difficult

due to the multitude units that go into it. To simplify the problem the cost function

in ACOT uses decibels, which not only makes all units equivalent but also switches

the equation from multiplication and division to addition and subtraction.

SNR = Ps +Gs +Gm + σT + λ− kTBn− L−R− 33 (3.9)
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Table 3.1: Two Way Radar Equation Variables [2]
Type Units Description

S̃NR dB Signal to Noise ratio limit that will pose a reasonable
chance of aircraft detection.

Ps watts Power (average) transmitted from source.
Gs dB Gain of the source antenna.
Gm dB Gain of the receiving antenna.
λ m Wavelength of transmitted power.
L dB Loss factor.
σT m2 Radar Cross Section of reflecting object.
kTBn dB A measure of the internal noise power of the receiver,

basically loss due to noise from the receiver temper-
ature.

R4 NM4 Range from target to radar, raised to the fourth
power due to inverse squared law acting twice on the
two way travel.

where R is the decibel equivalent of R4 and −33 is the decibel version of (4π)3. For

the TCSV model the radar cross section is not dependent on the orientation of the

aircraft towards the radar. Regardless of the orientation the value is always the user

defined circular radar cross section value.

Equation 3.9 is the decibel equivalent of Equation 3.8 and is the first step in

finding the cost incurred through radar exposure. Initially the SNR calculated from

Equation 3.9 was the cost, but it quickly became apparent that the negative nature

of decibels when their non-decibel counterpart was a decimal ended up canceling out

any incurred cost. To alleviate this the SNR from Equation 3.9 is normalized around

a user defined detection-limit SNR and converted out of decibel form, Equation 3.10.

JR = 10
SNR−S̃NR

10 (3.10)

where JR is the radar cost and S̃NR is the user defined detection threshold SNR.

This forces the cost function to equal 1 when the aircraft is at the radar detection

limit and quickly grow as it gets deeper into the threat area. When the aircraft is far
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away the cost is always less than 1 unless the cost from multiple radars adds up to

create a higher overall cost.

For three equal power radars randomly distributed in a small area Equation 3.10

produces the surface in Figure 3.1, though in the figure the plot is kept in decibels

since otherwise the scale would be impossible to read. Additionally, the top of the

cost is shown as truncated, but once again this is for ease of display; when the cost is

actually calculated there is no truncation to a maximum value.

Figure 3.1: Example of a cost function associate with three equal power radars in
decibels.

The last component of the cost function is the control cost. While this cost can

be used to greatly reduce the amount of changes the optimizer will make to the path,

its primary purpose here is to prevent the the optimizer from jumping back and forth

over an optimum solution as the it struggles to get to the exact minimum when a few

hundred thousandths off would not matter. In other words, adding the control cost

speeds up the run time. For the TCSV this takes the form:

Ju = 10−4u2 (3.11)

where the cost is simply a small fraction of the control’s magnitude. The 10−4 weight

on the cost was chosen because it worked well for the simple example problems used
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to test the code. As with the weight on the Mayer cost, it is expected better values

for this weight exist, but once again it is up to any end user as to what weights are

needed for their specific problems. This is also true for any weights on the radar cost,

though for the current cost here the weight is left as 1.

The final cost is calculated by summing the Mayer cost with the integral of the

Lagrange cost, Equation 3.12.

J = 10tf +

∫ tf

0

JR(t) + 10−4u(t)2dt (3.12)

where both the range term in the JR radar cost calculation and the control variable,

u, vary with time.

3.3 Five Component State Vector

It quickly became clear that as ACOT’s development continued, the TCSV

dynamics, while they worked, failed to capture the problem in as much detail as

initially hoped. They performed well, and technically proved that it is feasible to

create an aircraft course optimization tool using GPOPS, but something more was

need. Thus work began on the five component state vector model.

3.3.1 FCSV Dynamics. The five component state vector model is an ex-

tension of the three component model. Three of its five states are direct copies of

the state in the TCSV, but how their dynamics are calculated is modified to take

more conditions into account. The five states, x-position, x; y-position, y; velocity, ν;

heading, θ; and bank angle,φ are seen in Equation 3.13.
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η̄ =



x

y

ν

θ

φ


(3.13)

For this more advanced model the velocity is no longer constrained and is instead

allowed to vary, while the heading derivative is based on more than just a single

control parameter. With that said, the first three differential equations come quite

easily based on simply planar geometry or a control definition.

ẋ = ν cos(θ) (3.14)

ẏ = ν sin(θ) (3.15)

v̇ = U1 (3.16)

Equation 3.16 show that U1, the first component of the two component control vector

Ū , is the acceleration of the aircraft, and that the optimizer has direct control over

the aircraft velocity.

After the simplicity of the first three differential equations, the last two take

a bit more derivation. To begin, Figure 3.2 shows an aircraft free body diagram

with several forces labeled. This diagram is used extensively to derive the last two

differential equations. The terminology for Figure 3.2 is defined in Table 3.2.

Mentioned before, ACOT is a two dimensional problem. The underlying as-

sumption here is that the vertical component of lift, Lv, is always equal to the aircraft

weight, W , so that there is no vertical acceleration. This assumption allows for the
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Figure 3.2: Aircraft Free Body Diagram

Table 3.2: Aircraft FBD Description
L Lift produce by wings
W Weight of aircraft
Lv Vertical component of lift
Lt Component of lift that causes turn; centripetal component
LF Load Factor
φ Bank angle

final derivation to continue, beginning with the basic force equation seen in Equation

3.17.

F = ma (3.17)

it follows that

Lt = L sin(φ) = mat (3.18)

at =
L

m
sin(φ) (3.19)

where F is Force, m aircraft mass, and a acceleration. This acceleration is not the

same variable as the acceleration mentioned as the first control variable in Equation
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3.16, as it does not refer to acceleration in the direction of aircraft travel, but accel-

eration in the plane of the paper. Here it specifically relates to turning maneuvers,

though more specifically the t subscript denotes turn inducing forces or accelerations.

Since the sin(φ) multiplier in at finds the turn inducing component of acceleration, the

term L/m is the total acceleration experienced by the aircraft. As the amount of lift

is unknown, it is not possible to directly solve for this acceleration, but by assumming

the vertical component of lift is always equal to the weight of the aircraft it is possible

to remove the lift and weight terms from the problem completely. Starting with

L =
Lv

cos(φ)
(3.20)

and keeping in mind Lv = W ,

L =
W

cos(φ)
(3.21)

Rearranging to solve for L
W

, Equation 3.21 becomes

L

W
=

1

cos(φ)
(3.22)

and since lift over weight equals the load factor, Equation 3.22 becomes

LF =
1

cos(φ)
(3.23)

Equation 3.23 is not in usable units, but is instead in terms of G’s. To compensate

for this, ACOT multiplies the load factor by a Earth’s gravitational acceleration in

NM/hr2 to convert from a G-load to a true acceleration (recall all time units in

ACOT are in terms of hours).

Using the relationships in Equations 3.24, 3.25, and 3.26 it is possible to combine

Equations 3.19 and 3.23 into Equation 3.27

W = mg (3.24)

19



L

m
=
Lg

W
(3.25)

L

W
g = LFg (3.26)

at = LFg sin(φ) (3.27)

To finish the derivation, it is necessary to return to basic circular motion. As

seen in Figure 3.3

āc = ω̄ × V̄t (3.28)

where āc is centripetal acceleration, ω̄ angular velocity, and V̄t tangential velocity

(here is the only place where t subscript denotes tangential component).

Figure 3.3: Basic Circular Motion

By looking at the vector magnitudes, Equation 3.28 is written as

|āc| = |ω̄|
∣∣V̄t∣∣ sin(θ) (3.29)

where θ is the angle between the two vectors ω̄ and V̄t. In the case of circular motion

θ = 90◦, sin(θ) = 1 and, dropping the magnitude symbols, Equation 3.29 becomes

ac = ωVt (3.30)
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The circular motion terms introduced in Equation 3.28 relate to the ACOT

differential equations by the relationships in Equations 3.31, 3.32, 3.33.

at = ac (3.31)

θ̇ = ω (3.32)

ν = Vt (3.33)

Thus, by combining these relationships with the previously derived equations,

θ̇ =
at
ν

(3.34)

Rearranging and substituting 3.27 reveals

θ̇ =
LFγ sin(φ)

ν
(3.35)

and

φ̇ = U2 (3.36)

where, as with ν̇, U2 is the second component of the control vector Ū .

Putting these equations in terms of the state vector yields

η̇ =



η3 cos(φ)

η3 sin(φ)

U1

LFg sin(η5)
η3

U2


(3.37)

with the control vector
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Ū =

U1

U2

 (3.38)

As with the TCSV model, the FCSV code considers the active path constraints

at the same time as it calculates the dynamics. The same equation as in the TCSV,

Equation 3.6, calculates the distance from the aircraft to the center of each exclusion

zone and checks that value with the user provided hard constraint. If the distance is

less than the hard constraint, then the course is infeasible.

Finally, these complex dynamics require the user to provide more information

about the aircraft used during the optimization, as the simple maximum speed and

constant turn radius from the TCSV code does not fully define the problem. These

new dynamics use variable speeds and calculate turn radius based on bank angle and

speed. Table 3.3 defines the required aircraft information for this five component

model of the problem.

3.3.2 FCSV Cost. In the same way the FCSV dynamics were an extension

of the TCSV dynamics, so too are the FCSV costs an extension of the TCSV cost.

The primary concern for both are the radar costs and the finial time, though in the

FCSV version a few more components are added to increase the number of factors

the optimizer considers.

The minimum time cost function for the FCSV, Equation 3.39, is the same as

with the TCSV

JM = 10tf (3.39)

Though technically possible with the TCSV model, the inclusion of a fixed final

time designator is reserved for the FCSV model here. Equation 3.40, however does

not make the problem a true fixed final time problem as it is a cost rather than

constraint. While GPOPS can optimize for a fixed final time it was decided a better
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Table 3.3: FCSV Required Aircraft Information
Type Units Description
Minimum Speed kts Minimum speed the aircraft is allowed to travel. Rec-

ommended this is far enough above banked turn stall
speed that aircraft will not stall if turning while trav-
eling this slowly.

Maximum Speed kts Maximum speed the aircraft will be allowed to travel.
Max Acceleration kts/s Maximum amount of acceleration allowed during op-

timization.
Max Deceleration kts/s Maximum amount of deceleration allowed during op-

timization.
Max Load Factor g’s Maximum g-forces allowed. Used to calculate max-

imum bank angle, as ACOT assumes coordinated
turns.

Max Bank Rate deg/s Fastest the aircraft is allowed to bank during opti-
mization.

RCS File m2 A tabulated file, currently must be .mat, that con-
tains the radar cross section for the aircraft. There
are two columns, the first is the angle on the aircraft
from nose in degrees in one degree increments, the
second is the size of the cross section in m2 . An
example is contained in Appendix 1.
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solution for this problem would be a goal final time with any deviation from that goal

heavily penalized. This “goal” model allows for deviation from a fixed final time if

the optimizer finds an extremely low cost path to make up for the time penalty.

JM = e|tf−t̃f | (3.40)

where t̃f is the user defined desired final time.

The radar cost for the FCSV version of ACOT is the same as for the TCSV

model.

SNR = Ps +Gs +Gm + σT + λ− kTBn− L−R− 33 (3.41)

In the five component version, however, there is an additional time variant component

to the radar cost: a variable radar cross section. In the TCSV code the aircraft is

defined with a circular radar cross section who’s value remained the same regardless

of the aircraft’s orientation to the radar. In this more complex version of the code

the cross section is dependent on the aircraft heading. Instead of defining one value

for the entire aircraft, the user instead provides a table with the cross section as a

function of angle on the aircraft. Each time the optimizer calculates the cost of a

path it determines the orientation of the aircraft and picks what the cross section it

is presenting towards the radar.

As with the TCSV code, the SNR calculated by Equation 3.41 is normalized

about the user defined detection limit SNR and converted out of decibels.

JR = 10
SNR−S̃NR

10 (3.42)

Finally, there is still a small cost component associated with the control vector.

Once again, this cost is less to penalize control usage and more to prevent GPOPS

from attempting to make changes that may produce mathematical results that, in the

real world, would prove quite pointless. Additionally, this cost helps ensure GPOPS
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will not jump back and forth between two correct solutions that differ only in amount

of control usage.

JŪ = 10−15u2
1 + 10−6u2

2 (3.43)

As shown in Equation 3.43, the cost is built from the squared magnitude of the

control values, multiplied by weights. As with the weights discussed earlier, these

were chosen specifically for how they performed in the example problems used to test

ACOT. Better values for them do exists, but those values are based on the specific

problems a user needs to solve. The weights on the other components of this cost fall

under this same descriptor. They work for the examples run to test ACOT but need

to be set by a user for their specific problems.

As with the TCSV, the final cost is calculated by summing the Mayer cost with

the integral of the Lagrange cost, Equation 3.44.

J = JM +

∫ tf

0

JR(t) + 10−15u1(t)2 + 10−6u2(t)2dt (3.44)

3.4 Aircraft Course Optimization Tool Code

The Aircraft Course Optimization Tool is a set of MATLAB R© scripts that define

the problem in a way GPOPS can utilize. It is with these scripts the user interacts.

Currently there are two versions of these script: one for the three component state

vector and one for the five component state vector. While the two scripts do vary

in their internal make up, they function the same way and thus the discussion below

applies to both equally, unless otherwise stated. As Figure 3.4 shows, the code is

designed so all user interaction takes place with the ACOT Shell. Once the user

has provided the necessary information to the shell code the information is handed

off to the Main Script. This scrip takes the prepared information and packages it

into various structures that are required for GPOPS to function properly. When all

the information is properly sorted, the Main Script calls the actual GPOPS code.
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From there the code begins its optimization. The optimization itself takes place in

SNOPT, as discussed in Chapter II, with GPOPS improving the process by adding

various collocation points. While SNOPT and GPOPS are optimizing they reference

the last two user defined scripts, the DAE Script and the Cost Script. The DAE script

contains one of the sets of differential equations discussed in Sections 3.2.1 or 3.3.1

while the Cost script defines one of the cost functions discussed in Sections 3.2.2 or

3.3.2

Figure 3.4: Flow of ACOT and GPOPS Code

3.4.1 ACOT Shell. As ACOT is currently designed, nearly all user inter-

action with the ACOT takes place within the ACOT Shell (MATLAB R© file name

courseOptShell.m). Users can, and should, modify the costs in the cost function

script, but all problem input takes place within ACOT Shell. ACOT Shell is for-

matted in a more user-friendly manner than the standard GPOPS code, and while it

can be used by a person, the shell was created with the understanding that it would

interface with a GUI rather than directly with a user.

ACOT Shell has five main areas. The first section is where user sets the prop-

erties defining the aircraft model. Depending on the version of the code, either three

state or five state, exactly what properties are needed will vary. Because the variables
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required for the aircraft model were discussed elsewhere in the paper, and are defined

throughly in the code itself, a detailed discussion will be omitted here.

The second section of ACOT Shell contains the radar information. Here the

user provides the locations, gains, powers, and detection limits of any radar in the

problem. As with the aircraft information, a detailed description of these variables

will be omitted here since they are discussed in the code and previous sections.

The initial and conditions of the aircraft are next. For both the three state and

five state versions the initial and final positions are required. The FCSV code also

requires the input of initial and final velocities and headings, though they are free to

change unless the user sets them as constrained values.

Following the conditions is the initial guess. This vector provides a starting

point for the optimization. It contains the initial and final positions, as well as any

intermediate waypoints the user has determined will improve the optimized solution.

These intermediate points are not hard constraints, the optimizer can freely pick a

path off of these points. They exist to only to start the problem. Typically, the closer

this initial guess is to an optimum solution the faster that solution will be found.

As GPOPS and SNOPT find local minimums, the final optimized solution can vary

greatly depending on where the initial guess is placed. The gradient search will start

from there and move towards the closest local minimum.

The coordinate system ACOT uses for both user input and optimized solution

output is the navigation frame typically used for aircraft navigation. Shown in Figure

3.5, this coordinate system has the x-axis pointing north and the y-axis east. While its

not used for ACOT, the z-axis points down. Using the right-hand rule demonstrates

that, with 0◦ along the x-axis, the heading increases in a clockwise direction, which

matches any magnetic compass or aircraft heading indicator in the world. Thus any

positions put into ACOT use nautical miles east by nautical miles north, while any

headings start with 0◦ in the northern direction and increase as the aircraft turns

East.
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Figure 3.5: Navigation Frame

While the user only need provide positions for an initial guess, GPOPS requires

every state and every control to be defined at every initial guess point. Rather than

requiring the user to input every state, a tedious task for the FCSV model, the Shell

Code calls on the “Guess Enhancer.” The Guess Enhancer is a small script that fills in

the empty components of the initial guess. For the TCSV it adds in the new aircraft

heading at each initial guess point and sets the instantaneous heading change (the

control) to zero. For the FCSV, the Guess Enhancer sets the velocity to the aircraft

maximum, calculates the new aircraft heading, and sets the bank angle to maximum

in the direction of heading change. The two control variables, velocity change and

bank rate, are set to zero. While the maximum velocity and bank angle assignments

may seem extreme, and the zero control unrealistic, GPOPS is not forced to stick

with these values. As stated in the preceding paragraph, the optimizer can freely pick

values off of this initial guess. It acts only as a starting place.

The last user input required in ACOT Shell is setting which plots should be

presented before and after the run. For instance, before the optimization begins

ACOT can display a plot of the radars and initial guess, providing the user with an

opportunity to change the guess if it does not fit the problem. After the optimization

is complete any of the states, as well as the controls, can be displayed for analysis.
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In addition to user input and creating a fully defined initial guess, ACOT Shell

begins the data preparation for GPOPS. It converts all units into the units used

throughout ACOT and assigns any global variables and flags that are required during

the optimization. When the data is fully prepared ACOT Shell calls the ACOT Main

Script.

3.4.2 ACOT Main (courseOptMain.m). Shown in Figure 3.4, ACOT Shell

hands off the problem to ACOT Main. Most problems that use GPOPS start with

a main script that properly labels and sets up the variables and structures for the

problem. When work began on ACOT, this main script is where everything began.

The shell code was created to make the problem definition process a bit easier and

to provide a clean basis from which to add a GUI. Regardless, there are several

important functions the ACOT Main script performs. To begin with, the it acts as a

buffer between ACOT Shell and GPOPS itself. The main script officially declares the

initial conditions, final conditions, minimum and maximum values for all the states,

be it the three or five component state vector problem, and places the guess vector

and all other variables into various global structures. These global structures are then

used through GPOPS and SNOPT for the optimization.

ACOT Main also defines the internal setting GPOPS uses during it’s optimiza-

tion. While these settings are of little consequence to the end user they can greatly

change the outcome of the problem if changed. The manner in which they are cur-

rently set works well for ACOT’s needs.

Once the global structures are filled and GPOPS’ internal settings defined,

ACOT Main calls the actual GPOPS code. From here the internal working of GPOPS

and SNOPT take over. During its run, GPOPS calls on the ACOTS scripts defining

the problem’s dynamics and cost, both of which are described below.

When the optimization problem finishes, be it a successful or failed optimization,

GPOPS outputs information back to ACOT Main that is used to create any plots
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the user requested back in ACOT Shell. In addition to the plots, GPOPS keeps all

information stored in the MATLAB R© workspace for use in further analysis.

3.4.3 ACOT Dynamics (courseOptDae.m). ACOT Dynamics contains the

problem specific dynamics discussed in Sections 3.2.1 and 3.3.1 above. GPOPS uses

this code to determine how the aircraft moves over the duration of the optimization.

However, not only does this script contain the differential equations of motion, it is

also where any path constraints are applied to the problem. In the case of ACOT the

only path constraint in ACOT Dynamics are those calculating the radar exclusion

and no-fly zones discussed in the dynamics sections above.

While the equations do not diverge from those discussed earlier, the form the

equations take in the code are such that GPOPS is able to calculate the state deriva-

tive for every state, at every point in time it has created a collocation point. This is

due to the large array GPOPS uses to store the states, where each column is a separate

state and the rows are that states’ value for each collocation point. The state deriva-

tives are also stored in the same type array for use in updating the aforementioned

states back in GPOPS.

3.4.4 ACOT Cost (courseOptCost.m). The last ACOT specific script is

ACOT Cost. This code defines the cost function used during the optimization. As

with the differential equations of motion, the contents of this script depends on

whether the problem is the TCSV or FCSV version. In both cases the equations

discussed in Sections 3.2.2 and 3.3.2 are slightly modified for the code in that the

equations above are in scalar form, but in the cost function code they are written as

linear algebraic equations. This occurs for the same reason the state derivatives were

stored in large arrays: GPOPS calculates the cost at each collocation point before

integrating them over the entire flight time. In the code, the Lagrange is a large vector

created by summing the cost from the radar and control Lagrange components.
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IV. Results

With an infinite number of possible starting locations, end points, radar positions

and strengths, it is impossible to completely characterize ACOT’s behavior within

the time constraints of this investigation. With that said, however, it is withing

the realm of this thesis to demonstrate the feasibility of using GPOPS for aircraft

course optimization. To that end several examples from the three component state

vector and five component state vectors versions of ACOT are discussed below. That

discussion will include the initial and final conditions, aircraft information, radar

information, and the optimized output for a each problem, if it is possible to discuss

them. Furthermore, each successful example notes the amount of computer time each

run required. Each example has been performed on the same type computer with

nothing except MATLAB R© version 2011a running. Additionally, the command to

gauge the run time of the code looks at just the scripts involved in prepping and

running GPOPS. The time spent in the shell code and creating any plots is not

considered. For any examples which fail to run, or run with issues, an emphasis is

place on discussing where the issues might lie.

4.1 Three Component State Vector Results

The first version of ACOT to truly work, the three component state vector code

is the basis from which all runs are gauged. The examples below start with simple

one radar problems to verify that the code works as expected and to demonstrate how

GPOPS finds the closet local minimum of the cost function. After the single radar

problem is successfully demonstrated, the complexity of the problem is increased to

first three, and then finally seven radars. The cost function is verified as part of the

three radar example.

4.1.1 TCSV Single Radar Problem. The easiest way to demonstrate the

basic functionality of the ACOT code is with a simple single radar problem. This

example, as well as all following examples, use the aircraft model shown in Table 4.1

and radar model in Table 4.2. Recall that all information given in the radar properties
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is eventually converted to decibels. For the single radar problems the radar is located

at 30 NM East and 50 NM North.

Table 4.1: TCSV Aircraft Properties
Type Units Value

Ground Speed kts 200
Turn Radius NM 2

RCS m2 5

Table 4.2: Single Radar Problem Radar Information
Type Units Property Value
Ps watts 40000
Gs dB 40
Gm dB 40
f kHz 9.9931E − 6

kTBn dB −120
L dB 3

S̃NR dB 13
KillSNR dB 18

With the aircraft and radars defined, only the initial guess is required to begin

the optimization. For this first example the initial guess is seen in Table 4.3.

Table 4.3: TCSV Single Radar Problem Initial Guess
East (NM) North (NM)

0 50
30 25
100 50

Table 4.3 shows the aircraft starting at 0 NM East, 50 NM North and heading

south to 30 NM East, 25 NM North, or directly below the radar. At that point the

aircraft turns back to the north and heads to its final position of 100 NM East, 50

NM North.

Running all these values through GPOPS produces the optimized course in

Figure 4.2, with the cost and computer run time seen in Table 4.4. In the figures the

red inner circles represents the no-fly or exclusion zone around the center of a radar
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that is calculated from the killSNR value provided in the radar properties. The outer

green circle is the S̃NR detection limit ring, while the solid blue line either the initial

guess course or the optimized course (depending on the figure).

Table 4.4: TCSV Single Radar Problem Final Cost and Run Time
Cost CPU Run Time (sec)

2.3324 3.15

Figure 4.1: TCSV Single Radar Problem Guess Course

The quick run time and the optimized result in Figure 4.2 clearly demonstrates

the success of this first example. In a short period of time the optimizer success-

fully found the best southernly course around the radar using the provided aircraft

properties, radar properties, and initial guess.

One useful check to run on this results is to verify that the control vector output

by GPOPS will, when run through the problem dynamics, produce the same result

when using a numerical ODE solver like MATLAB’s R© built in ODE45. Running this

test produces the outcome in Figure 4.3, in which the solid blue line is still the GPOPS
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Figure 4.2: TCSV Single Radar Problem Optimized Course

optimized course and the dashed red optimized course is the ODE45 calculated course

using the TCSV dynamics and GPOPS output control vector. The two are difficult

to distinguish from each other as the ODE45 calculated path exactly matches the

GPOPS path.

4.1.2 TCSV Single Radar Problem with Alternate Initial Guess. Changes

in the initial guess can change the final optimized output. Discussed before, GPOPS

searches for the closest local minimum to the initial guess. For this single radar

problem, switching the initial guess from a southern path to northern causes the

optimized path to do the same. Specifically, the initial guess changes the intermediate

point from 30 NM East, 25 NM North to 30 NM East, 75 NM North; otherwise this

example is the exact same as in Section 4.1.1.

As expected the optimized course in Figure 4.5 hugged the northern limb of the

radar detection ring. Because this example is symmetrical to the previous one, the

cost function ends up with the same value as before, 2.3324. If the problem was not
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Figure 4.3: TCSV Single Radar Problem ODE Verification

Figure 4.4: TCSV Single Radar Problem with Alternate Initial Guess Course
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Figure 4.5: TCSV Single Radar Problem with Alternate Initial Guess Optimized
Course

symmetrical, and the southern route had a lower cost, the code would not be able

to reach it from the northern initial guess. The gradient always leads away from the

radar, so there is no way the gradient based solver would have looked on the opposite

side of the radar cost hump for a globally lower cost. While it was not necessarily true

for this case, other situations rely much more heavily on a good initial guess close to

the globally lowest cost path if that path is to be found.

4.1.3 TCSV Three Radar Problem. The first multiple radar problem con-

tains the same radar as the single radar problem, but adds two additional radars at

60 NM East, 55 NM North and 50 NM East, 20 NM North. The initial guess for this

problem contained one additional intermediate point. The entire guess is displayed

in Table 4.5.

Figures 4.6 and 4.7 show both the initial guess from the above table and the

optimized course. The run produced the cost and CPU run time results in Table 4.6
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Figure 4.6: TCSV Three Radar Problem Guess Course

Figure 4.7: TCSV Three Radar Optimized Course
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Table 4.5: TCSV Three Radar Problem Initial Guess
East (NM) North (NM)

0 50
30 25
50 40
100 50

Table 4.6: TCSV Three Radar Problem Final Cost and Run Time
Cost CPU Run Time (sec)

2.3553 3.81

Once again the successful optimization is clear. However the cost function itself

has not been verified. While GPOPS and SNOPT claim that the problem as been

optimized, further analysis is possible. By taking the output from this example and

perturbing it slightly to both the north and south, then running all three courses

through the cost function direction, created the three costs in Table 4.7 and the

output plot in Figure 4.8.

Table 4.7: TCSV Cost Function Verification
GPOPS Output 2.362563
Perturbed North 2.368556
Perturbed South 2.368554

The higher costs associated with the non-optimal perturbed courses prove that

the cost function is properly optimized by GPOPS. Furthermore, this mean the

GPOPS output can be trusted to be the lowest cost possible from the provided initial

guess.

4.1.3.1 TCSV Seven Radar Problem. The easy with which the TCSV

code optimized the first two examples bring up the question of just how complex of a

problem can ACOT handle, or specifically the TCSV version of ACOT. To test this

several more radars were added to the problem. All seven of them, their locations

shown in Table 4.8, are all equal power and match the radars used in Sections 4.1.1

and 4.1.3. The new radar positions also call for a new initial guess. This guess is
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Figure 4.8: TCSV Cost Verification Courses

similar to the three radar problem in that it has two intermediate points, but the

second point is located farther east and north. The full guess can be seen in Table

4.9

Table 4.8: TCSV Seven Radar Problem Radar Positions
Type Units Radar 1 2 3 4 5 6 7
EastPosition NM 30 50 70 50 70 70 30
NorthPosition NM 40 20 35 45 60 20 60

Running the optimization with these inputs produces the guess plot in Figure

4.9 and the optimized course in Figure 4.10. The total cost and CPU run time are

in Table 4.10. Even with seven radars, GPOPS and SNOPT are able to quickly and

easily optimize the aircraft course. The output, while not mission ready, is clearly

flyable.

4.1.4 Three Component State Vector Comments. While every one of the

above examples performed well, there are still a few items to discuss in how the
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Figure 4.9: TCSV Seven Radar Problem Guess Course

Figure 4.10: TCSV Seven Radar Optimized Course
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Table 4.9: TCSV Seven Radar Problem Initial Guess
East (NM) North (NM)

0 50
30 25
70 45
100 50

Table 4.10: TCSV Seven Radar Problem Final Cost and Run Time
Cost CPU Run Time (sec)

2.7818 9.40

code performs. To begin, there are a few quirks in how it operates. There is one

debilitating glitch that occurs when the user provided initial guess goes through any

exclusion zone. The infeasibility of this path creates a plateaued cost function on

which it is impossible for GPOPS and SNOPT to find a gradient. It is a simple glitch

that is easy to avoid by picking an initial guess that avoids any no-fly zones, a task

that would be expected regardless of this glitch’s existence.

The costs from the above examples are all very similar. Even the seven radar

example cost is only a few tenths higher than the single radar problem. This is due to

how the final time dominates the cost. Section 3.2.2 discussed the weights of each cost

components, with the final time having a weight 10× greater than the radar cost’s

weight. As the flight time for these examples hovered around 0.23 hours, the cost

hovered around 2.3. The weights here were picked for how they caused the problem

to behave for the examples used to test ACOT’s feasibility. The examples used here

are clearly not realistic scenarios, they exist only as test. The radars are far too weak

and the flight distances very short. Because of this, the weights are not meant to be

used by an end user. Instead a user should pick what weights create solutions they

can use.

4.1.5 Three Component State Vector Feasibility. Based on the results in the

examples above it is clear that the three component state vector version of ACOT can

successfully optimize a wide range of courses around various radar threats. It does
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so with the speed and regularity necessary for quick mission planning. Obviously

there are limits to the code, but, as there are an infinite number of possible problems,

testing everything is impossible. With that, it is feasible to use GPOPS to create an

aircraft course optimization tool. However, the success of this three component state

vector version brought up the question of how advance of a problem could GPOPS

handle. With that the five component state vector version of ACOT was created.

4.2 Five Component State Vector Results

Created out of a desire for more realism in the problem, the FCSV ACOT

includes more states, more complex dynamics, modified cost function, and the ability

to define the problem better through additional constraints. As with the TCSV

examples above, the first example problem for this new version is a simple single

radar problem before moving on to more complex problem. Unlike the TCSV results,

however, the outcome from these runs is not as guaranteed and is plagued by various

errors and only partially optimized solutions. As the complexity of the problem

increases, the change of a successful optimization decreases.

4.2.1 FCSV Single Radar Problem. While the real world seldom presents

threat areas consisting of just one radar, the simplicity of the situation allows for

an easy demonstration of ACOT’s core capabilities. This simple scenario is also

important is it considers the more complex dynamics, but still keeps the problem

easy for the optimizer. The first example here is the same as used for the first TCSV

example in Section 4.1.1 save for the new aircraft model seen in Table 4.11. This new

aircraft model includes the file that contains the radar cross section of the aircraft as

a function of angle. While that RCS could be anything, and in reality would be a

complex shape, it is kept a constant 5 m2 for the following problems, unless otherwise

noted.

The FCSV code requires more than just the the initial and final positions to be

defined at the start and end of the problem. As said in Section 3.4.1 every state must
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Table 4.11: FCSV Aircraft Properties
Type Units Value

Minimum Speed kts 200
Maximum Speed kts 450
Max Acceleration kts/s 50
Max Deceleration kts/s 25
Max Load Factor g’s 3
Max Bank Rate deg/s 4.5

RCS File m2 RCS55.mat

be defined at every guess point, and the initial and final positions are still guess points.

However, rather than allowing the “Guess Enhancer” to set every state value at these

points the user has control over them. Additionally, the FCSV version is designed so

that a user has the ability to constrain the heading and velocities at the start and

end points in the event they needed to match some specific boundary conditions. If

they heading and velocity are not constrained their assigned values do not matter as

the optimizer will attempt to make them whatever value is optimum. The positions

are automatically constrained since otherwise the problem would not be fully defined.

For this first single radar example the initial and final states are in Table 4.12.

Type Units Value Constrained
x0 NM 0 Yes
y0 NM 50 Yes
v0 kts 400 No
h0 degrees 40 No
xf NM 100 Yes
yf NM 50 Yes
vf kts 400 No
hf degrees 90 No

Table 4.12: FCSV Single Radar Problem Initial Position, Guess Points, and Final
Position

In this example everything except the number of states and the aircraft model

match the first TCSV example. Running ACOT with these values creates the guess

plot in Figure 4.11 and the optimized results in Figure 4.12. Figures 4.13 and 4.14

display the aircraft heading and velocity as a function of time. Note that the initial
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and final values do not match those shown in Table 4.12. As the heading and velocity

were not constrained for this problem GPOPS was able to modify them to whichever

values produced the lowest cost solution.

As with the TCSV examples, the solid blue line in the course figures represents

the aircraft course, the red inner circle the exclusion zone around a radar , and the

green outer circle denotes the range around a radar in which the aircraft is said to

have been detected.

Figure 4.11: FCSV Single Radar Problem Guess Course

The cost and run time for this problem are shown in Table 4.13. Not the

slightly higher cost than with the TCSV as the code does consider more variable

when calculating the total cost. Additionally, the run time is dramatically increase.

This trend continues as the complexity increase.

Table 4.13: FCSV Single Radar Problem Final Cost and Run Time
Cost CPU Run Time (sec)

2.3833 34.1615
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Figure 4.12: FCSV Single Radar Problem Optimized Course

Figure 4.13: FCSV Single Radar Problem Aircraft Heading
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Figure 4.14: FCSV Single Radar Problem Aircraft Velocity

Even though the FCSV and TCSV problems use different dynamics and different

cost functions, it is interesting to see how different the optimized courses between the

two versions of code are. As seen in Figure 4.14, the aircraft remained at its maximum

speed of 450kts, which matches the constant velocity of the TCSV example. Note that

the aircraft RCS and the initial guess for the two versions are the same; therefore the

differences between the two courses result more from the dynamics and cost function

rather than the aircraft or initial guess. Figure 4.15 shows the output from both the

three and five component state vector runs, with the solid blue line as the result from

the three state run and the dashed red the result from the five state run. It appears

then the slight differences in the aircraft model and its maximum control values, as well

as the variations in the cost function, force the aircraft to travel slightly closer to the

radar, but overall the optimized course is the same. This demonstrates the changes to

the dynamics and the aircraft model do not drastically modify the optimized solution.

Just as with the TCSV example, both the dynamics equations and the control

vectors of this FCSV run were used in MATLAB’s R© ODE45 solver. In the case of this
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Figure 4.15: FCSV Single Radar Problem Optimized Difference (TCSV: Blue Solid,
FCSV: Red

single radar problem the ODE course matched the GPOPS course well, but not as

closely as the same test for the TCSV problem. Figure 4.16 shows a slight deviation

around the main bend in the course. This deviation most likely occurred not due to

bad dynamics, or even a bad control vector, but because of how the control vector

is interpolated during ODE45’s run. As the control vector is not defined for every

point in time, its value at an arbitrary time must be interpolated based on the value

at the times closest to ODE45’s current point of interest. In the end, the successful

convergence of ODE45 shows that, as far as the dynamics used in the FCSV version

of ACOT are concerned, the output is a feasible, flyable course.

4.2.1.1 Single Radar Problem with Alternate Initial Guess. A quick

demonstration of how the the final outcome is still dependent on the initial guess,

the example from Section 4.1.2 is repeated here using the FCSV dynamics with the

results shown in Figures 4.17 and 4.18. While it does not produce the exact result
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Figure 4.16: FCSV Single Radar Problem ODE Comparison

as the TCSV example it does confirm the effect the initial guess has on the optimum

solution acts there same for the more complex dynamics here.

4.2.2 FCSV Three Radar Problem. The next step up from the single radar

problem is the three radar scenario. To keep the number of different problems down,

this too is a copy of a TCSV example problem, in this case from Section 4.1.3. The

differences between the two problems lie only in the size of the state vector and the cost

function. The initial and final positions, as well as the positions of the intermediate

points are the same. The results, shown in Figures 4.19 and 4.20

This example ran in 72.15 seconds, just over twice as long as the single radar

problem, and resulted in a completely optimized output. Combine that with its small

cost of 2.3822 and this example appears successful, which it is. The three radars in

this example allow for verification of the cost function in the same manner it was

performed for the TCSV in Section 4.1.3. However, difficulties in the optimization

process prevented two perturbed courses from being calculated, and the one that
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Figure 4.17: FCSV Single Radar Problem with Alternate Initial Guess

Figure 4.18: FCSV Single Radar Problem with Alternate Initial Guess Optimized
Course
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Figure 4.19: FCSV Three Radar Problem Guess Course

Figure 4.20: FCSV Three Radar Problem Optimized Course
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was calculated is not fully optimized. The difficulties that caused this failure in

optimization will be discussed in Section 4.2.3, where it will become clear that the

success of this and the previous example is, when it comes to FCSV, unusual. For the

cost verification, Figure 4.21 shows the two courses, with the solid blue as the true

course and the dashed red as the perturbed, unoptimized course, while Table 4.14

shows the two costs. This is an extreme example of how different courses will have

different cost function, but the cost function is shown to be valid.

Table 4.14: FCSV Cost Function Verification
GPOPS Output 2.3848

Perturbed 8.6489

Figure 4.21: FCSV Cost Verification Courses

4.2.3 Failed FCSV Examples. Following the successful optimization of the

single radar problem in Section 4.2.1 it was necessary to test the various constraints

the FCSV version of ACOT could place on the problem. The first test required con-

straining the initial and final headings. This, while at first glance a simple change,
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caused the code to fail in its optimization. More specifically, its run time far surpassed

the two successful optimization above before SNOPT, the internal optimizer inside

GPOPS, stopped its optimization and output a message claiming it experienced nu-

merical difficulties. The exact nature of these numerical difficulties is unknown, but

they most likely resulted from the large difference between the constrained headings

and the optimum headings. SNOPT attempted to follow the gradients it was calcu-

lating, but GPOPS kept sending back heading values for the start and end points that

caused discontinuities inside SNOPT. Because SNOPT could not rectify the issue it

claimed numerical difficulties and gave up. Close examination of the heading results

from this run in figure 4.22 show that the output headings approached, but did not

reach, the constrained values of 45◦ for the start and 135◦ at for the final position.

Figure 4.22: FCSV Constrained Heading Results

A similar problem occurred when the initial and final velocities were constrained

to a value less than the aircraft maximum speed of 450kts. The code ran, but rather

than outputting a fully optimized solution SNOPT stopped part way through and

claimed numerical difficulties. Once again the best explanation for this is the differ-

52



ence between the constrained and optimum values. Figure 4.23 shows that the aircraft

came close to starting at its assigned speed of 350kts and approached the same speed

at its target destination, but examination of the actual MATLAB R© reveals they were

not exact. At the very least this does demonstrate that the code can handle accel-

erations in the problem, but that in the end the variability proves too much for the

optimizer.

Figure 4.23: FCSV Constrained Velocity Results

The numerical difficulties also extends to the desired final time problem. Where

all the examples so far finished in roughly 0.23 hours this examples was set to end

around 0.3 hours. While a human mission planner could first consider slowing down,

Figure 4.24 shows that rather than slowing down the aircraft did a full 360◦ turn near

the end of the problem. This results hints at the underlying problem with really all of

these failed examples: too many possible solutions. When it comes to the desired final

time problem, or really any of the failed examples, there are several different ways

that the optimizer could approach the problem. For the desired final time problem

specifically the course could have flow farther out from the radar, the aircraft could
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have slow down, or it could do something like the loop that it did do. Furthermore,

the coupled nature of the dynamics, where, for example, a slower speed will increase

the heading change rate for a fixed bank angle, allows for too much to change with

one slight adjustment. There is too much coupling.

Figure 4.24: FCSV Desired Final Time Results

This coupling issue is revealed even more when a non-circular radar cross section

is added to the problem. Figure 4.25 shows a two lobe radar cross section with values

of 1 m2 at the aircraft nose and tail, and 6m2 at the wingtips. When the optimizer

adjusts the aircraft’s bank rate, that modifies the aircraft bank angle, which then plays

into the heading change. That heading change directly affects the aircraft heading,

which is used to calculate which angle on the aircraft is facing the current radar of

interest. That angle is used to look up the RCS value in the provided RCS value table

that is then used in the calculation of the radar cost. That is for just one collocation

point and one radar. When this problem is expanded to dozens of collocation points

and multiple radars it is a daunting problem, one that is too much for GPOPS and

SNOPT.
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Figure 4.25: FCSV Two Lobe Radar Cross Section

An additional possible cause for the trouble the code experiences with the two

lobe radar cross section is the discontinuity where the RCS is 1m2, however it is

thought this is ignored due to the discrete manner in which GPOPS checks the RCS.

Even if it pulled the cross section values for exactly 0◦, 1◦, and 359◦ all it would see

are three separate cross sections sizes at those points. With those stored it would

attempt to incorporate them into the cost gradient. It is this incorporation that is

the most likely cause of the difficulties.

4.2.4 Five Component State Vector Feasibility. These examples are just

a few of the dozens of problems run during the development of the FCSV ACOT.

Some, like the two successful version in Section 4.2.1 and 4.2.2, worked. The majority

however experienced numerical difficulties and stopped like those in this section, or

they never finished running. One particular case ran over a 48 hour period and never

stopped, as SNOPT had gotten into an internal minor iteration loop. Other cases

caused GPOPS to add more and more collocation points until the computer memory
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filled and MATLAB R© canceled the run. In the end, the added realism of the FCSV

subtracted from the overall success of the code. As the dynamics improved, the run

time increased and the success rate fell. As the cost function and dynamics grew

to reflect the real world, SNOPT began to struggle. While it is possible to get the

simplest of problems to run with the FCSV, in the end it proves infeasible. Any

aircraft course optimization must rely on the TCSV.
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V. Conclusions

This research’s ultimate goal was to determine the feasibility of using GPOPS as

the core component of an aircraft course optimization tool. Based on the results

in Chapter IV it can be reasonably determined that using GPOPS for this type of

problem is possible, though only when using simplified dynamics. The addition of

any noteworthy amounts of realism, be it in the aircraft model or the flight dynamics,

and the complexity of the problem causes GPOPS and SNOPT to stall.

The determination of this problem’s feasibility rested on the creation of a tool

that, with GPOPS at its core, would take a rough course for an aircraft and optimize

it around various threat areas. Early work towards that goal created versions of

the code that worked successfully, and in fact it was by retreating to those versions

that this research could be considered a success. Those early versions lead to more

advanced code that incorporated more realistic aircraft models and flight dynamics.

However, in the end the advance code failed.

Section 4.1 demonstrated how the simple three component state vector accom-

plished this thesis’ goal. Section 4.2 shows that the advanced dynamics in the five

component state vector could work under certain situation, but ultimately failed when

tasked with anything truly useful.

The next step for ACOT is the determination of the best weights to apply on

each component of the cost function. Mentioned before, the weights used for the

testing and examples were picked for how well they worked for the small radars and

limited ranges involved in these test problems. Real world scenarios will require

different weights.

The successfully creation of a GPOPS based aircraft course optimizer should not

be the end of this line of research. Further work should focus on creating an optimizer

that can make use of more advanced aircraft models and dynamics. The simple

moving point of ACOT is barely enough to begin mission planning, and as the types

of threats change, and the number of them grow, it will take much more than GPOPS

and SNOPT to find the best way around them. The advanced dynamics in the FCSV
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caused GPOPS and SNOPT to struggle because of the extremely coupled natured of

the equations. Trying to determine the relationship between all the components, and

then minimizing the cost each added to the total, is too much for the general nature

of SNOPT. Further work on this should involve the creation of an optimizer uniquely

suited to the complex world of aircraft flight.

Crafting a tool to achieve the goal of improving mission planning times via the

ability to take a rough idea for an aircraft course and quickly optimize is an area

well worth further research. This experiment has shown GPOPS can handle a simple

version of the task, but that ultimately any work with GPOPS is limited by its general

nature. GPOPS may be feasible, and ACOT usable, but only if the user is willing to

accept the limited parameters it considers.
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Appendix A. Three State Matlab Scripts

A.1 Three State Shell Code

Listing A.1: Appendix2/courseOptShell.m
1 % -------------------------

% Course Optimization Problem Shell Script

% -------------------------

%

% Aircraft Course Optimization Tool (ACOT)

6 %

% A script to aid interfacing the aircraft course optimization ...

GPOPS

% problem designed by 2Lt Ryan Gauntt with an GUI interface. As a ...

stand

% alone tool , this shell can also act as a method for running ...

problems with

% the ACOT

11 %

% Globals:

% INPUTS - structure containing all the necessary variables and ...

conditions

% for ACOT to run.

% FLAGS - structure containg all the flags that will allow logic...

later on

16 % in the code to run.

% Variables

% Ground_Speed - ground speed of aircraft (nm).

% For now ACOT uses a constant

% speed and turn radius model. Later versions may use speed ...

as a

21 % control or state variable.

% Turn_Radius - turn radius of aircraft at set Ground_Speed (nm)...

.

% Granted , a turn radius is based on airspeed and several ...

other ,

% factors but this number is just a base one for ACOT to use...

. As ACOT

% matures this variable may become a function based on speed...

.

26 % RCS - name of file containing radar cross section of aircraft.

% File must currently be a .mat file with the first column ...

angles in

% radians and the second column the RCS of the aircraft at ...

that angle

% (m^2)

% radar - a matrix containing all the information about each ...

radar. This

31 % will be used with the radar equation later on to produce the ...

maximum

% radar range. Additionally , it can be used as part of the cost ...

function

59



% as well. NOTE ON USAGE: each row corresponds to a radar. To ...

add more

% radars type more rows in the matrix. Variable used in matrix ...

are

% discussed below:

36 % x - radar x position in local cooridnate frame (nm)

% y - radar y position in local cooridnate frame (nm)

% Ps - Power (average) transmitted from source (watts)

% Gs - Gain of the source antenna (dB)

% Gm - Gain of the receiving antenna (dB)

41 % f - frequency of radar beam (kHz)

% kTBn - measure of the internal noise power of the receiver...

(dB)

% L - loss factor (dB)

% SNR - Signal to Noise ratio limit for detection (dB)

% KillSNR - SNR that signifies you will now die from ...

something (dB)

46 % Initial Condition

% x0 - aircraft 's initial x position (nm)

% y0 - aircraft 's initial y position (nm)

% Final Condition

% xf - aircraft 's final x position (nm)

51 % yf - aircraft 's final y position (nm)

% GuessPoints - The x,y coordinates that provide a reasonable ...

guess for

% the path the optimizer will eventually find. Recommended this ...

be a

% voronoi path with three points for each radar crossing (before...

hiting

% radars , in the middle of the two radars , and after leaving the...

radars).

56 % These are NOT waypoints that the plane has to hit , save for ...

the initial

% and final positions , but those are deemed necessary not by the...

guess

% part of the code.

% Waypoints - Contains the row number of any guessPoint that is

% considered a mandatory waypoint , followed by the allowable ...

circular

61 % error around that waypoint.

% -------------------------

close all

clear all

66 clc

global INPUTS FLAGS

% Aircraft Information

71 Ground_Speed = 450;

Turn_Radius = 2;

RCS = 5;
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% Radar Information

76 % [x y Ps Gs Gm f kTBn L SNR KillSNR]

radars = [30 50 40000 40 40 9.9931e+006 -120 3 13 18;

50 20 40000 40 40 9.9931e+006 -120 3 13 18;

60 55 40000 40 40 9.9931e+006 -120 3 13 18];

%25 25 40000 40 40 9.9931e+006 -120 3 13 18];

81 %70 90 40000 40 40 9.9931e+006 -120 3 13 18;

%70 50 40000 40 40 9.9931e+006 -120 3 13 18;

%30 90 40000 40 40 9.9931e+006 -120 3 13 18];

radar_constant = 33; %Will be a subtraction

86
% Initial Conditions

x0 = 0;

y0 = 50;

91 % Final Conditions

xf = 100;

yf = 50;

% GuessPoints

96 %[x1 y1; x2 y2;...] First and last guessPoints will ...

always need

%to be x0 y0 and xf yf

guessPoints = [x0 y0;

30 25;

50 40;

101 xf yf];

% Plots (1 = yes , 0 = no)

Plot_Guess = 1;

Plot_Radar_SNR = 0;

106 Plot_Solution = 1;

Plot_SolandSNR = 0;

Plot_Colocation = 0;

Plot_Heading = 1;

Plot_hdot = 0;

111
C_AN = [0 1 0;

1 0 0;

0 0 -1];

INPUTS.C_NA = C_AN^-1;

116
% Convert Radar input into usable numbers (freq (kHz) to ...

wavelength (nm))

for i = 1:size(radars)

radars(i,3) = 10* log10(radars(i,3));

radars(i,6) = 10* log10 ((299710000./( radars(i,6) .*1000))^2); %...

converts from kHz frequency to m wavelenght

121 end

61



%Put all above variable into necessary structures

maxRCS = RCS;

INPUTS.aircraft.velocity = Ground_Speed;

126 INPUTS.aircraft.turnRadius = Turn_Radius;

INPUTS.RCS = RCS;

for i = 1:size(radars)

%Due to the prevelance of metric units in EM math , all range ...

and SNR

%calculations are done using the metric system. Even so, all ...

units and

131 %computer logic use nautical miles.

INPUTS.radarMaxRange(i,:) = (10.^(( radars(i,3)+radars(i,4)+...

radars(i,5)+radars(i,6) +...

maxRCS -radar_constant -radars(i,7)-radars(i,8)-radars(i,9))...

./10)).^(1/4) *5.39956803*10^ -4;

if radars(i,10) == 0

INPUTS.radarKillRange(i,:) = 0;

136 else

INPUTS.radarKillRange(i,:) = (10.^(( radars(i,3)+radars(i...

,4)+radars(i,5)+radars(i,6) +...

maxRCS -radar_constant -radars(i,7)-radars(i,8) -(radars(...

i,10)))./10)).^(1/4) *5.39956803*10^ -4;

end

end

141 INPUTS.radarInfo = radars;

INPUTS.radarConstant = radar_constant;

INPUTS.state.x0 = x0;

INPUTS.state.y0 = y0;

INPUTS.state.xf = xf;

146 INPUTS.state.yf = yf;

[nuTime , nuGuess , nuControl] = courseOptGuessEnhancer(INPUTS , ...

guessPoints);

INPUTS.guess.time = nuTime;

INPUTS.guess.state (: ,1:3) = nuGuess;

INPUTS.guess.control = nuControl;

151
plotMin = min([x0 ,xf ,y0 ,yf ,radars (:,1) ',radars (:,2) ']);
plotMax = max([x0 ,xf ,y0 ,yf ,radars (:,1) ',radars (:,2) ']);

INPUTS.plotLim.min = plotMin;

156 INPUTS.plotLim.max = plotMax;

if Plot_Radar_SNR == 1 || Plot_SolandSNR == 1

disp('Calculating meshgrid values for Radar SNR Plot')
disp('If this plot is not desired , set Plot_Radar_Cost and/or ...

Plot_SolandRad equal to 0');
161 prog = 0;

h = waitbar(prog ,sprintf('%3.0f%% Complete ',prog));
[x y] = meshgrid(plotMin :0.1: plotMax , plotMin :0.1: plotMax);

radStats = radars (1:8);

cost = [];

166 progmax = size(radars ,1) *3+1;
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for i = 1:size(radars ,1)

for j = 1:size(x,1)

for k = 1:size(y,2)

Rsqd(j,k) = (x(j,k)-radars(i,1))^2+(y(j,k)-radars(...

i,2))^2;

171 end

end

prog = prog + 1/ progmax;

waitbar(prog ,h,sprintf('%3.0f%% Complete ',prog *100))
[j k] = size(Rsqd);

176 S = ones(j,k);

CS = max(RCS(:,2));

Q = (radars(i,3)+radars(i,4)+CS+radars(i,5)+radars(i,6)...

-...

radar_constant -radars(i,7)-radars(i,8)).*S;

for j = 1:size(x,1)

181 for k = 1:size(y,2)

Rdb(j,k) = 10.* log10((Rsqd(j,k)*1852^2) .^2);

end

end

prog = prog + 1/ progmax;

186 waitbar(prog ,h,sprintf('%3.0f%% Complete ',prog *100))
SNR = Q-Rdb;

if isempty(cost)

cost = SNR;

else

191 cost = cost+SNR;

end

prog = prog + 1/ progmax;

waitbar(prog ,h,sprintf('%3.0f%% Complete ',prog *100))
end

196 for j = 1:size(cost ,1)

for k = 1:size(cost ,2)

if cost(j,k) > min(radars (:,10));

cost(j,k) = min(radars (:,10));

end

201 end

end

prog = prog + 1/ progmax;

waitbar(prog ,h,sprintf('%3.0f%% Complete ',prog *100))
close(h)

206 if Plot_Radar_SNR == 1

figure ()

axis([ plotMin plotMax plotMin plotMax ])

G = surf(x,y,cost ,'FaceColor ','interp ','FaceLighting ','...
phong ');

set(G, 'linestyle ', 'none');
211 title('Radar Cost Function Field')

axis equal

xlabel('East , x-position (NM)')
ylabel('North , y-position (NM)')
zlabel('Signal to Noise Ratio (dB)')
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216 view (2)

end

INPUTS.x = x;

INPUTS.y = y;

INPUTS.radPlots.cost = cost;

221
end

if Plot_Guess == 1

figure ()

226 hold on

axis([ plotMin plotMax plotMin plotMax ])

for i = 1:size(radars)

circle(radars(i ,1:2),INPUTS.radarKillRange(i,:) ,250,'r');
circle(radars(i ,1:2),INPUTS.radarMaxRange(i) ,250,'g');

231 end

for j = 1:size(INPUTS.guess.state (: ,1:2) ,1) -1

plot([ INPUTS.guess.state(j,1),INPUTS.guess.state(j+1,1)],[...

INPUTS.guess.state(j,2),INPUTS.guess.state(j+1,2)]);

end

axis equal

236 title('Guess Course with Radars , Exclusion Zones , and ...

Waypoints ')
xlabel('East , x-position (NM)')
ylabel('North , y-position (NM)')

end

241 pause (0.5)

disp('Plots are behind the MATLAB window ')
reply = input('Do you want continue with current guess and radar ...

field? Y/N [Y]: ', 's');
if ~strcmp(reply ,'Y') && ~strcmp(reply ,'y')

246 error('Run Cancelled ')
end

FLAGS.solutionPlot = Plot_Solution;

FLAGS.solutionAndRadarSNR = Plot_SolandSNR;

251 FLAGS.colocationPlot = Plot_Colocation;

FLAGS.hdotPlot = Plot_hdot;

FLAGS.headingPlot = Plot_Heading;

256 courseOptMain

A.2 Three State Guess Enhancer Code

Listing A.2: Appendix2/courseOptGuessEnhancer.m
function [nuTime , nuGuess , nuControl] = courseOptGuessEnhancer(...

INPUTS , guessPoints)

64



%--------------------------------------

4 % BEGIN: function courseOptGuessEnhancer.m

%

% This script takes the main waypoints provided in the ...

courseOptShell

% script and added in additional points between them to provide a ...

more

% accurate initial guess to the GPOPS algorthim.

9 %

%--------------------------------------

N = 1; % Number of steps to add between each waypoint

14 providedVelocity = INPUTS.aircraft.velocity;

K = size(guessPoints ,1) -1;

nuGuess = [guessPoints (1 ,1:2),atan2(guessPoints (2,2)-guessPoints...

(1,2),guessPoints (2,1)-guessPoints (1,1))];

for i = 1:K

19 dist(i) = norm(guessPoints(i+1 ,1:2)-guessPoints(i ,1:2));

deltaTime(i) = dist(i)/providedVelocity;

h = atan2(guessPoints(i+1,2)-guessPoints(i,2),guessPoints(i...

+1,1)-guessPoints(i,1));

deltaDist = dist(i)/N;

for j = 1:N

24 nuGuess = [nuGuess; nuGuess(end ,1)+cos(h)*deltaDist ,...

nuGuess(end ,2)+sin(h)*deltaDist ,h];

end

end

totalTime = sum(deltaTime (1,:));

delTime = totalTime /(N*K);

29
nuTime = 0;

nuControl = 0;

for i = 1:N*K

nuTime(i+1) = nuTime(end)+delTime;
34 nuControl(i+1) = 0;

end

nuTime = nuTime ';
nuControl = nuControl ';

A.3 Three State GPOPS Main Code

Listing A.3: Appendix2/courseOptMain.m
% -----------------------

% Course Optimization Problem

% -----------------------

4
% The problem solved here is given as follows:

% Minimize
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% t_f , J

9 % subject to the dynamic constraints

% dx/dt = v*cos(u)

% dy/dt = v*sin(u)

% dth/dt = u

% with the boundary conditions

14 % x(0) = 0, y(0) = 0, v(0) = 450

% x(t_f) = 25, y(t_f) = 50, v(t_f) = 450

%

% --------------------------------------------------

19 tic

global CONST INPUTS FLAGS

CONST.radarPos = INPUTS.radarInfo (: ,1:2);

24 CONST.radarStats = INPUTS.radarInfo (: ,3:9);

CONST.radarMaxRange = INPUTS.radarMaxRange;

CONST.radarKillRange = INPUTS.radarKillRange;

CONST.radarConstant = INPUTS.radarConstant;

CONST.v = INPUTS.aircraft.velocity;

29 CONST.R = INPUTS.aircraft.turnRadius;

CONST.RCS = INPUTS.RCS;

x0 = INPUTS.state.x0;

y0 = INPUTS.state.y0;

34 xf = INPUTS.state.xf;

yf = INPUTS.state.yf;

xmin = min(INPUTS.guess.state (:,1));

xmax = max(INPUTS.guess.state (:,1));

ymin = min(INPUTS.guess.state (:,2));

39 ymax = max(INPUTS.guess.state (:,2));

hmin = -2*pi;

hmax = 2*pi;

param_min = [];

param_max = [];

44 path_min = CONST.radarKillRange .^2;

path_max = xmax ^2* ones(1,size(CONST.radarKillRange))';
event_min = [];

event_max = [];

duration_min = [];

49 duration_max = [];

limits.meshPoints = [-1 +1];

limits.nodesPerInterval = 10;

54 limits.time.min = [0 0];

limits.time.max = [0 10];

limits.control.min = -CONST.v/CONST.R;

limits.control.max = CONST.v/CONST.R;

limits.state.min(1,:) = [x0 xmin -100 xf];
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59 limits.state.max(1,:) = [x0 xmax +100 xf];

limits.state.min(2,:) = [y0 ymin -100 yf];

limits.state.max(2,:) = [y0 ymax +100 yf];

limits.state.min(3,:) = [hmin hmin hmin];

limits.state.max(3,:) = [hmax hmax hmax];

64 limits.parameter.min = param_min;

limits.parameter.max = param_max;

limits.path.min = path_min;

limits.path.max = path_max;

limits.event.min = event_min;

69 limits.event.max = event_max;

limits.duration.min = duration_min;

limits.duration.max = duration_max;

guess.time (:,1) = INPUTS.guess.time;

74 guess.state (:,1) = INPUTS.guess.state (:,1);

guess.state (:,2) = INPUTS.guess.state (:,2);

guess.state (:,3) = INPUTS.guess.state (:,3);

guess.control (:,1) = INPUTS.guess.control;

guess.parameter = [];

79
setup.name = 'CourseOpt -Problem ';
setup.funcs.cost = 'courseOptCost ';
setup.funcs.dae = 'courseOptDae ';
setup.limits = limits;

84 setup.guess = guess;

setup.derivatives = 'finite -difference ';
setup.direction = 'increasing ';
setup.autoscale = 'off';
setup.mesh.tolerance = 1e-3;

89 setup.mesh.iteration = 10;

setup.mesh.nodesPerInterval.min = 4;

setup.mesh.nodesPerInterval.max = 12;

[output ,gpopsHistory] = gpops(setup);

94 solution = output.solution;

solutionPlot = output.solutionPlot;

if gpopsHistory (1,end).output.SNOPT_info == 1

disp('Optimality conditions satisfied.')
99 disp('Acceptable Course ')

disp(['Total Cost of Course: ',sprintf('%3.4f',gpopsHistory...
(1,1).output.cost)])

else if gpopsHistory (1,end).output.SNOPT_info == 3

disp('Optimization sucessful , but best accuracy not ...

acheived.')
disp('Course is usable , but optimizer had difficulty.')

104 disp(['Total Cost of Course: ',sprintf('%3.4f',...
gpopsHistory (1,1).output.cost)]);

else if gpopsHistory (1,end).output.SNOPT_info == 41

disp('Optimization experienced numerical difficulties....

')
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disp('Current point cannot be improved , though ...

solution has been provided.')
disp('Use of solution possible , though more analysis ...

is required.')
109 disp(['Total Cost of Course: ',sprintf('%3.4f',...

gpopsHistory (1,1).output.cost)]);

else

disp('Unsucessfull Optimization.')
disp('Ignore Output ')

end

114 end

end

toc

119 for i = 1:size(solutionPlot.state (:,3) ,1)

V_A = [cos(solutionPlot.state(i,3)); sin(solutionPlot....

state(i,3)); 0];

V_N = INPUTS.C_NA*V_A;

solutionPlot.state(i,3) = acos(V_N(1,1))*180/pi;

end

124
if FLAGS.solutionPlot == 1 || FLAGS.solutionAndRadarSNR == 1

figure ()

hold on

axis([ INPUTS.plotLim.min INPUTS.plotLim.max INPUTS.plotLim.min...

INPUTS.plotLim.max])

129 for i = 1:size(CONST.radarPos)

circle(CONST.radarPos(i,:),CONST.radarKillRange(i) ,250,'r'...
);

if FLAGS.solutionAndRadarSNR == 1

circle(CONST.radarPos(i,:),CONST.radarMaxRange(i) ,250,...

'k');
else

134 circle(CONST.radarPos(i,:),CONST.radarMaxRange(i) ,250,...

'g');
end

end

if FLAGS.solutionAndRadarSNR == 1

G = surf(INPUTS.x,INPUTS.y,INPUTS.radPlots.cost ,'FaceColor...
','interp ','FaceLighting ','phong ');

139 set(G, 'linestyle ', 'none');
plot3(solutionPlot.state (:,1),solutionPlot.state (:,2) ,25*...

ones(size(solutionPlot.state (:,1) ,1)),'k');
view (2)

else

plot(solutionPlot.state (:,1),solutionPlot.state (:,2));

144 end

if FLAGS.colocationPlot == 1

plot(solution.state (:,1),solution.state (:,2),'ro');
end

axis equal
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149 title('Optimized Aircraft Course ')
xlabel('East , x-position (NM)')
ylabel('North , y-position (NM)')

end

154 if FLAGS.hdotPlot == 1

figure ()

plot(solutionPlot.time , solutionPlot.control (:,1) *180/pi)

title('Heading Derivative in Degrees ')
end

159 if FLAGS.headingPlot == 1

figure ()

plot(solutionPlot.time , solutionPlot.state (:,3))

title('Heading in Degrees ')
end

164
save everything.mat

A.4 Three State Cost Function Code

Listing A.4: Appendix2/courseOptCost.m
%--------------------------------------

% BEGIN: function courseOptCost.m

%

% Variables:

5 % hVec - aircraft heading vector (nm/hr)

% rVec - vector from aircraft to radar (nm)

% psi - angle on aircraft that faces radar in question (radian)

% CS - cross section aircraft is displaying to radar (m) NOTE: ...

in meters

% in input file to make SNR calculation faster , more ...

accurate due to

10 % less conversion

%--------------------------------------

function [Mayer ,Lagrange ]= courseOptCost(sol)

global CONST INPUTS

15
tf = sol.terminal.time;

t = sol.time;

x = sol.state (:,1);

20 y = sol.state (:,2);

h = sol.state (:,3);

u = sol.control .^2;

v = CONST.v;

25 rangeSqd = CONST.radarMaxRange .^2;

radPos = CONST.radarPos;

radStats = CONST.radarStats (: ,1:6);

SNRLimit = CONST.radarStats (:,7);
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radConst = CONST.radarConstant;

30 RCS = CONST.RCS;

Mayer = tf *10^1;

radCost = [];

35 for i = 1:size(rangeSqd)

Rsqd = ((x-radPos(i,1)).^2+(y-radPos(i,2)).^2);

CS = RCS;

RdB = 10.* log10((Rsqd *1852^2) .^2); %convert range^4 (nm) to dB...

(m)

SNR = radStats(i,1)+radStats(i,2)+radStats(i,3)+radStats(i,4)+...

CS -...

40 radConst -RdB -radStats(i,5)-radStats(i,6);

if isempty(radCost)

radCost = 10.^((SNR -SNRLimit(i))./10);

else

radCost = 10.^((SNR -SNRLimit(i))./10) + radCost;

45 end

end

controlCost = 10^ -4.*u.^2;

50 Lagrange = radCost + controlCost;

%save info.mat Lagrange SNR Rsqd x y

A.5 Three State Differential Algebraic Equation Code

Listing A.5: Appendix2/courseOptDae.m
%-------------------------------------

% BEGIN: function courseOptDae.m

3 %-------------------------------------

function dae = courseOptDae(sol);

global CONST

8 t = sol.time;

x = sol.state (:,1);

y = sol.state (:,2);

h = sol.state (:,3);

u = sol.control;

13
xdot = CONST.v.*cos(h);

ydot = CONST.v.*sin(h);

hdot = u;

18 path = [];

for i = 1:size(CONST.radarPos)

currentPath = (x-CONST.radarPos(i,1)).^2+(y-CONST.radarPos(i...

,2)).^2;
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path = [path currentPath ];

end

23
dae = [xdot ydot hdot path];

%-----------------------------------

% END: function courseOptDae.m

28 %-----------------------------------
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Appendix B. Five State Matlab Scripts

B.1 Five State Shell Code

Listing B.1: Appendix1/courseOptShell.m
1 % -------------------------

% Course Optimization Problem Shell Script

% -------------------------

%

% Aircraft Course Optimization Tool (ACOT)

6 %

% A script to aid interfacing the aircraft course optimization ...

GPOPS

% problem designed by 2Lt Ryan Gauntt with an GUI interface. As a ...

stand

% alone tool , this shell can also act as a method for running ...

problems with

% the ACOT

11 %

% Globals:

% INPUTS - structure containing all the necessary variables and ...

conditions

% for ACOT to run.

% FLAGS - structure containing all the flags that will allow ...

logic later on

16 % in the code to run.

% Variables

% Min_Speed - minimum ground speed of aircraft (kts)

% Max_Speed - maximum ground speed of aircraft (kts)

% Max_Acceleration - maximum acceleration of aircraft in flight ...

(kts/s)

21 % Max_Deceleration - maximum deceleration of aircraft in flight ...

(kts/s)

% Max_Load_Factor - maximum Load Factor i.e. 1g 2g 3g...

% Max_Bank_Rate - maximum bank rate of aircraft (deg/s)

% RCS - name of file containing radar cross section of aircraft.

% File must currently be a .mat file with the first column ...

as angles in

26 % degrees in one degree increments and the second column the...

RCS of

% the aircraft at that angle

% (m^2)

% radar - a matrix containing all the information about each ...

radar. This

% will be used with the radar equation later on to produce the ...

maximum

31 % radar range. Additionally , it can be used as part of the cost ...

function

% as well. NOTE ON USAGE: each row corresponds to a radar. To ...

add more

% radars type more rows in the matrix. Variable used in matrix ...

are
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% discussed below:

% x_R - radar x position in local cooridnate frame (nm)

36 % y_R - radar y position in local cooridnate frame (nm)

% Ps - Power (average) transmitted from source (watts)

% Gs - Gain of the source antenna (dB)

% Gm - Gain of the receiving antenna (dB)

% f - frequency of radar beam (kHz)

41 % kTBn - measure of the internal noise power of the receiver...

(dB)

% L - loss factor (dB)

% SNR - Signal to Noise ratio limit for detection (dB)

% KillSNR - Signal to Noise ratio limit for definite kill [i...

.e. SAM

% launch] (dB) [Plane cannot enter this circle]

46 % Initial Condition

% x0 - aircraft 's initial x position (nm)

% y0 - aircraft 's initial y position (nm)

% v0_con - flag to check if initial velocity is a hard ...

constraint

% v0 - aircraft 's initial velocity (nm/hr)

51 % h0_con - flag to check if initial heading is a hard ...

constraint

% h0 - aircraft 's initial heading (degrees) - code converts ...

to radian

% Final Condition

% xf - aircraft 's final x position (nm)

% yf - aircraft 's final y position (nm)

56 % vf_con - flag to check if final velocity is a hard ...

constraint

% vf - aircraft 's final velocity (nm/hr)

% hf_con - flag to check if final heading is a hard ...

constraint

% hf - aircraft 's final heading (degrees) - code converts to...

radian

% GuessPoints - The x,y coordinates that provide a reasonable ...

guess for

61 % the path the optimizer will eventually find. Recommended this ...

be a

% voronoi path with three points for each radar crossing (before...

hiting

% radars , in the middle of the two radars , and after leaving the...

radars).

% These are NOT waypoints that the plane has to hit , save for ...

the initial

% and final positions , but those are deemed necessary not by the...

guess

66 % part of the code.

% Waypoints - Contains the row number of any guessPoint that is

% considered a mandatory waypoint , followed by the allowable ...

circular

% error around that waypoint.

% Plots - mark these as 1 if you would like the code to plot the
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71 % associated values.

% -------------------------

close all

clear all

76 clc

global INPUTS FLAGS

% Aircraft Information

81 Min_Speed = 200;

Max_Speed = 450;

Max_Acceleration = 50;

Max_Deceleration = 25;

Max_Load_Factor = 3; % Maximum Load Factor i.e. 1g 2g 3g...

86 Max_Bank_Rate = 4.5; %deg/sec

RCS_File = 'RCS55.mat';

% Radar Information

% [x_R y_R Ps Gs Gm f kTBn L SNR KillSNR]

91 radars = [30 50 40000 40 40 9.9931e+006 -120 3 13 18;

60 55 40000 40 40 9.9931e+006 -120 3 13 18;

50 15 40000 40 40 9.9931e+006 -120 3 13 18];

%45 10 40000 40 40 9.9931e+006 -120 3 13 50];

%40 10 40000 40 40 9.9931e+006 -120 3 13 50;

96 %80 70 40000 40 40 9.9931e+006 -120 3 13 50;

%90 65 40000 40 40 9.9931e+006 -120 3 13 50;

%70 20 40000 40 40 9.9931e+006 -120 3 13 50];

radar_constant = 33; %Will be a subtraction

101
% Initial Conditions

x0 = 0;

y0 = 50;

% Is Initial Velocity a hard constraint? If not , no need to change...

v0 here.

106 v0_con = 0; % 1 = yes , 0 = no

v0 = 350;

% Is Initial Heading a hard constraint? If not , no need to change ...

h0 here.

h0_con = 0; % 1 = yes , 0 = no

h0 = 45;

111
% Final Conditions

xf = 100;

yf = 50;

% Is Final Velocity a hard constraint? If not , no need to change ...

v0 here.

116 vf_con = 0; % 1 = yes , 0 = no

vf = 350;

% Is Initial Heading a hard constraint? If not , no need to change ...

hf here.
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hf_con = 0; % 1 = yes , 0 = no

hf = 135;

121
% GuessPoints

%[x1 y1; x2 y2;...] First and last guessPoints will ...

always need

%to be x0 y0 and xf yf

guessPoints = [x0 y0;

126 30 25;

50 40;

xf yf];

% Fixed Time , Min Time , Max Time Calculation?

131 % If fixed time , input desired final time; otherwise leave 0.

% If max time , input desired max time; otherwise leave 0.

Final_Time = 0;

% Plots (1 = yes , 0 = no)

136 Plot_Guess = 1;

Plot_Radar_SNR = 0;

Plot_RCS = 1;

Plot_Solution = 1;

Plot_SolandSNR = 0;

141 Plot_Colocation = 0;

Plot_Bank_Angle = 0;

Plot_Bank_Rate = 0;

Plot_Heading = 1;

Plot_Velocity = 1;

146 Plot_VelDeriv = 0;

%Convert from NAV frame to Math Frame , headings into radians

h0 = h0*(pi /180);

hf = hf*(pi /180);

151
C_AN = [0 1 0;

1 0 0;

0 0 -1];

INPUTS.C_NA = C_AN^-1;

156
V_N = [cos(h0); sin(h0); 0];

V_A = C_AN*V_N;

INPUTS.state.h0 = atan2(V_A(2,1),V_A(1,1));

161 V_N = [cos(hf); sin(hf); 0];

V_A = C_AN*V_N;

INPUTS.state.hf = atan2(V_A(2,1),V_A(1,1));

% Convert Radar input into usable numbers (freq (kHz) to ...

wavelength (nm))

166 for i = 1:size(radars)

radars(i,3) = 10* log10(radars(i,3));
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radars(i,6) = 10* log10 ((299710000./( radars(i,6) .*1000))^2); %...

converts from kHz frequency to m wavelenght

end

171 %Put all above variable into necessary structures

load(RCS_File); % NOTE: temp method , RCS must be the matrix name ...

in file

maxRCS = 10.* log10(max(RCS(:,2))); %RCS converted to dB for use in...

MaxRange

INPUTS.aircraft.minVelocity = Min_Speed;

INPUTS.aircraft.maxVelocity = Max_Speed;

176 INPUTS.aircraft.maxAcceleration = Max_Acceleration *3600; % ...

Converting to nm/hr^2

INPUTS.aircraft.maxDeceleration = Max_Deceleration *3600; % ...

Converting to nm/hr^2

INPUTS.aircraft.maxBankAngle = acos (1/ Max_Load_Factor); % ...

Max_Bank_Angle*pi /180;

INPUTS.aircraft.maxBankRate = Max_Bank_Rate*pi /180*3600; % ...

Converting to radians/hr

INPUTS.aircraft.maxLF = Max_Load_Factor;

181 INPUTS.RCS = RCS;

for i = 1:size(radars)

%Due to the prevelance of metric units in EM math , all range ...

and SNR

%calculations are done using the metric system. Even so, all ...

units and

%computer logic use nautical miles.

186 INPUTS.radarMaxRange(i,:) = (10.^(( radars(i,3)+radars(i,4)+...

radars(i,5)+radars(i,6) +...

maxRCS -radar_constant -radars(i,7)-radars(i,8)-radars(i,9))...

./10)).^(1/4) *5.39956803*10^ -4;

INPUTS.radarKillRange(i,:) = (10.^(( radars(i,3)+radars(i,4)+...

radars(i,5)+radars(i,6) +...

maxRCS -radar_constant -radars(i,7)-radars(i,8) -(radars(i...

,10)))./10)).^(1/4) *5.39956803*10^ -4;

end

191 INPUTS.radarInfo = radars;

INPUTS.radarConstant = radar_constant;

INPUTS.state.x0 = x0;

INPUTS.state.y0 = y0;

INPUTS.state.v0 = v0;

196 INPUTS.state.xf = xf;

INPUTS.state.yf = yf;

INPUTS.state.vf = vf;

[nuTime , nuGuess , nuControl] = courseOptGuessEnhancer(INPUTS , ...

guessPoints);

INPUTS.guess.time = nuTime;

201 INPUTS.guess.state = nuGuess;

INPUTS.guess.control = nuControl;

INPUTS.finalTime = Final_Time;

plotMin = min([x0 ,xf ,y0 ,yf ,radars (:,1) ',radars (:,2) ']);
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206 plotMax = max([x0 ,xf ,y0 ,yf ,radars (:,1) ',radars (:,2) ']);

INPUTS.plotLim.min = plotMin;

INPUTS.plotLim.max = plotMax;

211 if Plot_Radar_SNR == 1 || Plot_SolandSNR == 1

disp('Calculating meshgrid values for Radar SNR Plot')
disp('If this plot is not desired , set Plot_Radar_Cost and/or ...

Plot_SolandRad equal to 0');
prog = 0;

h = waitbar(prog ,sprintf('%3.0f%% Complete ',prog));
216 [x y] = meshgrid(plotMin :0.1: plotMax , plotMin :0.1: plotMax);

radStats = radars (1:8);

cost = [];

progmax = size(radars ,1) *3+1;

for i = 1:size(radars ,1)

221 for j = 1:size(x,1)

for k = 1:size(y,2)

Rsqd(j,k) = (x(j,k)-radars(i,1))^2+(y(j,k)-radars(...

i,2))^2;

end

end

226 prog = prog + 1/ progmax;

waitbar(prog ,h,sprintf('%3.0f%% Complete ',prog *100))
[j k] = size(Rsqd);

S = ones(j,k);

CS = max(RCS(:,2));

231 Q = (radars(i,3)+radars(i,4)+CS+radars(i,5)+radars(i,6)...

-...

radar_constant -radars(i,7)-radars(i,8)).*S;

for j = 1:size(x,1)

for k = 1:size(y,2)

Rdb(j,k) = 10.* log10((Rsqd(j,k)*1852^2) .^2);

236 end

end

prog = prog + 1/ progmax;

waitbar(prog ,h,sprintf('%3.0f%% Complete ',prog *100))
SNR = Q-Rdb;

241 if isempty(cost)

cost = SNR;

else

cost = cost+SNR;

end

246 prog = prog + 1/ progmax;

waitbar(prog ,h,sprintf('%3.0f%% Complete ',prog *100))
end

for j = 1:size(cost ,1)

for k = 1:size(cost ,2)

251 if cost(j,k) > min(radars (:,10));

cost(j,k) = min(radars (:,10));

end

end
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end

256 prog = prog + 1/ progmax;

waitbar(prog ,h,sprintf('%3.0f%% Complete ',prog *100))
close(h)

if Plot_Radar_SNR == 1

figure ()

261 axis([ plotMin plotMax plotMin plotMax ])

G = surf(x,y,cost ,'FaceColor ','interp ','FaceLighting ','...
phong ');

set(G, 'linestyle ', 'none');
title('Radar Cost Function Field')
axis equal

266 xlabel('East , x-position (NM)')
ylabel('North , y-position (NM)')
zlabel('Signal to Noise Ratio (dB)')
view (2)

end

271 INPUTS.x = x;

INPUTS.y = y;

INPUTS.radPlots.cost = cost;

end

276
if Plot_Guess == 1

figure ()

hold on

axis([ plotMin plotMax plotMin plotMax ])

281 for i = 1:size(radars)

circle(radars(i ,1:2),INPUTS.radarKillRange(i,:) ,250,'r');
circle(radars(i ,1:2),INPUTS.radarMaxRange(i) ,250,'g');

end

for j = 1:size(INPUTS.guess.state (: ,1:2) ,1) -1

286 plot([ INPUTS.guess.state(j,1),INPUTS.guess.state(j+1,1)],[...

INPUTS.guess.state(j,2),INPUTS.guess.state(j+1,2)]);

end

axis equal

title('Guess Course with Radars , Exclusion Zones , and ...

Waypoints ')
xlabel('East , x-position (NM)')

291 ylabel('North , y-position (NM)')
end

if Plot_RCS == 1

figure ()

296 polar(RCS(:,1).*(pi/180) ,RCS(:,2));

title('Aircraft Radar Cross Section , m^2')
end

pause (0.5)

301 disp('Plots are behind the MATLAB window ')
reply = input('Do you want continue with current guess and radar ...

field? Y/N [Y]: ', 's');
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if ~strcmp(reply ,'Y') && ~strcmp(reply ,'y')
error('Run Cancelled ')

end

306
FLAGS.v0_con = v0_con;

FLAGS.h0_con = h0_con;

FLAGS.vf_con = vf_con;

FLAGS.hf_con = hf_con;

311 FLAGS.solutionPlot = Plot_Solution;

FLAGS.solutionAndRadarSNR = Plot_SolandSNR;

FLAGS.colocationPlot = Plot_Colocation;

FLAGS.bankAnglePlot = Plot_Bank_Angle;

FLAGS.bankRatePlot = Plot_Bank_Rate;

316 FLAGS.headingPlot = Plot_Heading;

FLAGS.vPlot = Plot_Velocity;

FLAGS.vdotPlot = Plot_VelDeriv;

courseOptMain

B.2 Five State Guess Enhancer Code

Listing B.2: Appendix1/courseOptGuessEnhancer.m
function [nuTime , nuGuess , nuControl] = courseOptGuessEnhancer(...

INPUTS , guessPoints)

%--------------------------------------

% BEGIN: function courseOptGuessEnhancer.m

5 %

% This script takes the main waypoints provided in the ...

courseOptShell

% script and added in additional points between them to provide a ...

more

% accurate initial guess to the GPOPS algorthim.

%

10 %--------------------------------------

maxVelocity = INPUTS.aircraft.maxVelocity;

v0 = INPUTS.state.v0;

vf = INPUTS.state.vf;

15 maxBankAngle = INPUTS.aircraft.maxBankAngle;

K = size(guessPoints ,1) -1;

th = atan2(guessPoints (2,2)-guessPoints (1,2),guessPoints (2,1)-...

guessPoints (1,1));

nuGuess = [guessPoints (1,1), guessPoints (1,2), v0 , th , 0];

20 for i = 1:K

dist = norm(guessPoints(i+1 ,1:2)-guessPoints(i ,1:2));

deltaTime(i) = dist/maxVelocity;

th = atan2(guessPoints(i+1,2)-guessPoints(i,2),guessPoints(i...

+1,1)-guessPoints(i,1));
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nuGuess = [nuGuess; nuGuess(end ,1)+cos(th)*dist , nuGuess(end...

,2)+sin(th)*dist , maxVelocity , th , maxBankAngle ];

25 if nuGuess(i+1,4)-nuGuess(K)<0

nuGuess(i+1,4) = -maxBankAngle;

end

end

nuGuess(end ,3) = vf;

30
totalTime = sum(deltaTime (1,:));

delTime = totalTime/K;

nuTime = 0;

35 nuControl = [0 0];

for i = 1:K

nuTime(i+1) = nuTime(end)+delTime;
nuControl = [nuControl; 0 0];

end

40
nuTime = nuTime ';

B.3 Five State GPOPS Main Code

Listing B.3: Appendix1/courseOptMain.m
1 % -----------------------

% Course Optimization Problem

% -----------------------

% The problem solved here is given as follows:

6 % Minimize

% t_f , J

% subject to the dynamic constraints

% dx/dt = v*cos(u)

11 % dy/dt = v*sin(u)

% dth/dt = u

% with the boundary conditions

% x(0) = 0, y(0) = 0, v(0) = 450

% x(t_f) = 25, y(t_f) = 50, v(t_f) = 450

16 %

% --------------------------------------------------

tic

21 global CONST INPUTS FLAGS

CONST.radarPos = INPUTS.radarInfo (: ,1:2);

CONST.radarStats = INPUTS.radarInfo (: ,3:9);

CONST.radarMaxRange = INPUTS.radarMaxRange;

26 CONST.radarKillRange = INPUTS.radarKillRange;

CONST.radarConstant = INPUTS.radarConstant;

CONST.vMin = INPUTS.aircraft.minVelocity;
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CONST.vMax = INPUTS.aircraft.maxVelocity;

CONST.acMax = INPUTS.aircraft.maxAcceleration;

31 CONST.dcMax = INPUTS.aircraft.maxDeceleration;

CONST.maxBank = INPUTS.aircraft.maxBankAngle;

CONST.maxBankRate = INPUTS.aircraft.maxBankRate;

CONST.maxLF = INPUTS.aircraft.maxLF;

CONST.RCS = INPUTS.RCS;

36
x0 = INPUTS.state.x0;

y0 = INPUTS.state.y0;

v0 = INPUTS.state.v0;

th0 = INPUTS.state.h0;

41 xf = INPUTS.state.xf;

yf = INPUTS.state.yf;

vf = INPUTS.state.vf;

thf = INPUTS.state.hf;

46 xmin = INPUTS.plotLim.min;%-max(INPUTS.guess.state (:,1));

xmax = INPUTS.plotLim.max;%max(INPUTS.guess.state (:,1));

ymin = INPUTS.plotLim.min;%-max(INPUTS.guess.state (:,2));

ymax = INPUTS.plotLim.max;%max(INPUTS.guess.state (:,2));

vmin = CONST.vMin;

51 vmax = CONST.vMax;

thmin = -2*pi;

thmax = 2*pi;

phimin = -CONST.maxBank;

phimax = CONST.maxBank;

56 param_min = [];

param_max = [];

path_min = CONST.radarKillRange .^2;

path_max = xmax ^2* ones(1,size(CONST.radarKillRange))';
event_min = [];

61 event_max = [];

duration_min = [];

duration_max = [];

iphase = 1;

66
limits(iphase).meshPoints = [-1 +1];

limits(iphase).nodesPerInterval = 10;

limits(iphase).time.min = [0 0];

limits(iphase).time.max = [0 10];

71 limits(iphase).state.min(1,:) = [x0 xmin -100 xf];

limits(iphase).state.max(1,:) = [x0 xmax +100 xf];

limits(iphase).state.min(2,:) = [y0 ymin -100 yf];

limits(iphase).state.max(2,:) = [y0 ymax +100 yf];

if FLAGS.v0_con == 1 && FLAGS.vf_con == 1

76 limits(iphase).state.min(3,:) = [v0 vmin vf];

limits(iphase).state.max(3,:) = [v0 vmax vf];

end

if FLAGS.v0_con == 0 && FLAGS.vf_con == 1

limits(iphase).state.min(3,:) = [vmin vmin vf];
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81 limits(iphase).state.max(3,:) = [vmax vmax vf];

end

if FLAGS.v0_con == 1 && FLAGS.vf_con == 0

limits(iphase).state.min(3,:) = [v0 vmin vmin];

limits(iphase).state.max(3,:) = [v0 vmax vmax];

86 end

if FLAGS.v0_con == 0 && FLAGS.vf_con == 0

limits(iphase).state.min(3,:) = [vmin vmin vmin];

limits(iphase).state.max(3,:) = [vmax vmax vmax];

end

91 if FLAGS.h0_con == 1 && FLAGS.hf_con == 1

limits(iphase).state.min(4,:) = [th0 thmin thf];

limits(iphase).state.max(4,:) = [th0 thmax thf];

end

if FLAGS.h0_con == 0 && FLAGS.hf_con == 1

96 limits(iphase).state.min(4,:) = [thmin thmin thf];

limits(iphase).state.max(4,:) = [thmax thmax thf];

end

if FLAGS.h0_con == 1 && FLAGS.hf_con == 0

limits(iphase).state.min(4,:) = [th0 thmin thmin];

101 limits(iphase).state.max(4,:) = [th0 thmax thmax];

end

if FLAGS.h0_con == 0 && FLAGS.hf_con == 0

limits(iphase).state.min(4,:) = [thmin thmin thmin];

limits(iphase).state.max(4,:) = [thmax thmax thmax];

106 end

limits(iphase).state.min(5,:) = [phimin phimin phimin ];

limits(iphase).state.max(5,:) = [phimax phimax phimax ];

limits(iphase).control.min = [-CONST.dcMax; -CONST.maxBankRate...

];

limits(iphase).control.max = [CONST.acMax; CONST.maxBankRate ];

111 limits(iphase).parameter.min = param_min;

limits(iphase).parameter.max = param_max;

limits(iphase).path.min = path_min;

limits(iphase).path.max = path_max;

limits(iphase).event.min = event_min;

116 limits(iphase).event.max = event_max;

limits(iphase).duration.min = duration_min;

limits(iphase).duration.max = duration_max;

guess(iphase).time (:,1) = INPUTS.guess.time;

121 guess(iphase).state (:,1) = INPUTS.guess.state (:,1);

guess(iphase).state (:,2) = INPUTS.guess.state (:,2);

guess(iphase).state (:,3) = INPUTS.guess.state (:,3);

guess(iphase).state (:,4) = INPUTS.guess.state (:,4);

guess(iphase).state (:,5) = INPUTS.guess.state (:,5);

126 guess(iphase).control = INPUTS.guess.control;

guess(iphase).parameter = [];

setup.name = 'CourseOpt -Problem ';
131 setup.funcs.cost = 'courseOptCost ';
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setup.funcs.dae = 'courseOptDae ';
setup.limits = limits;

setup.guess = guess;

setup.derivatives = 'finite -difference ';
136 setup.direction = 'increasing ';

setup.autoscale = 'off';
setup.mesh.tolerance = 1e-2;

setup.mesh.iteration = 10;

setup.mesh.nodesPerInterval.min = 4;

141 setup.mesh.nodesPerInterval.max = 12;

[output ,gpopsHistory] = gpops(setup);

solution = output.solution;

solutionPlot = output.solutionPlot;

146
if gpopsHistory (1,end).output.SNOPT_info == 1

disp('Optimality conditions satisfied.')
disp('Acceptable Course ')
disp(['Total Cost of Course: ',sprintf('%3.4f',gpopsHistory...

(1,1).output.cost)])

151 else if gpopsHistory (1,end).output.SNOPT_info == 3

disp('Optimization sucessful , but best accuracy not ...

acheived.')
disp('Course is usable , but optimizer had difficulty.')
disp(['Total Cost of Course: ',sprintf('%3.4f',...

gpopsHistory (1,1).output.cost)]);

else if gpopsHistory (1,end).output.SNOPT_info == 41

156 disp('Optimization experienced numerical difficulties....

')
disp('Current point cannot be improved , though ...

solution has been provided.')
disp('Use of solution possible , though more analysis ...

is required.')
disp(['Total Cost of Course: ',sprintf('%3.4f',...

gpopsHistory (1,1).output.cost)]);

else

161 disp('Unsucessfull Optimization.')
disp('Ignore Output ')

end

end

end

166
toc

for i = 1:size(solutionPlot.state (:,4) ,1)

V_A = [cos(solutionPlot.state(i,4)); sin(solutionPlot....

state(i,4)); 0];

171 V_N = INPUTS.C_NA*V_A;

solutionPlot.state(i,4) = acos(V_N(1,1))*180/pi;

end

if FLAGS.solutionPlot == 1 || FLAGS.solutionAndRadarSNR == 1
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176 figure ()

hold on

axis([ INPUTS.plotLim.min INPUTS.plotLim.max INPUTS.plotLim.min...

INPUTS.plotLim.max])

for i = 1:size(CONST.radarPos)

circle(CONST.radarPos(i,:),CONST.radarKillRange(i) ,250,'r'...
);

181 if FLAGS.solutionAndRadarSNR == 1

circle(CONST.radarPos(i,:),CONST.radarMaxRange(i) ,250,...

'k');
else

circle(CONST.radarPos(i,:),CONST.radarMaxRange(i) ,250,...

'g');
end

186 end

if FLAGS.solutionAndRadarSNR == 1

G = surf(INPUTS.x,INPUTS.y,INPUTS.radPlots.cost ,'FaceColor...
','interp ','FaceLighting ','phong ');

set(G, 'linestyle ', 'none');
plot3(solutionPlot.state (:,1),solutionPlot.state (:,2) ,25*...

ones(size(solutionPlot.state (:,1) ,1)),'k');
191 view (2)

else

plot(solutionPlot.state (:,1),solutionPlot.state (:,2));

end

if FLAGS.colocationPlot == 1

196 plot(solution.state (:,1),solution.state (:,2),'ro');
end

axis equal

title('Optimized Aircraft Course ')
xlabel('East , x-position (NM)')

201 ylabel('North , y-position (NM)')
end

if FLAGS.vPlot == 1

figure ()

plot(solutionPlot.time ,solutionPlot.state (:,3));

206 title('Velocity in knots')
xlabel('time (hrs)')
ylabel('velocity (knots)')

end

if FLAGS.headingPlot == 1

211 figure ()

plot(solutionPlot.time , solutionPlot.state (:,4))

title('Heading in Degrees ')
xlabel('time (hrs)')
ylabel('heading (degrees)')

216 end

if FLAGS.bankAnglePlot == 1

figure ()

plot(solutionPlot.time , solutionPlot.state (:,5) *180/pi)

title('Bank Angle in Degrees ')
221 xlabel('time (hrs)')
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ylabel('bank angle (degrees)')
end

if FLAGS.vdotPlot == 1

figure ()

226 plot(solutionPlot.time ,solutionPlot.control (:,1) /3600);

title('Velocity Derivative in knots/sec')
xlabel('time (hrs)')
ylabel('acceleration (knots/sec)')

end

231 if FLAGS.bankRatePlot == 1

figure ()

plot(solutionPlot.time , solutionPlot.control (:,2) *180/pi /3600)

title('Bank Derivative in Degrees ')
xlabel('time (hrs)')

236 ylabel('bank rate (degrees/sec)')
end

B.4 Five State Cost Function Code

Listing B.4: Appendix1/courseOptCost.m
%--------------------------------------

2 % BEGIN: function courseOptCost.m

%

% Variables:

% hVec - aircraft heading vector (nm/hr)

% rVec - vector from aircraft to radar (nm)

7 % psi - angle on aircraft that faces radar in question (radian)

% CS - cross section aircraft is displaying to radar (m) NOTE: ...

in meters

% in input file to make SNR calculation faster , more ...

accurate due to

% less conversion

%--------------------------------------

12 function [Mayer ,Lagrange ]= courseOptCost(sol)

global CONST INPUTS

tf = sol.terminal.time;

17
t = sol.time;

x = sol.state (:,1);

y = sol.state (:,2);

v = sol.state (:,3);

22 theta = sol.state (:,4);

phi = sol.state (:,5);

u = sol.control .^2;

rangesqd = CONST.radarMaxRange .^2;

27 radPos = CONST.radarPos;

radStats = CONST.radarStats (: ,1:6);

SNRLimit = CONST.radarStats (:,7);
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radConst = CONST.radarConstant;

RCS = CONST.RCS;

32
if INPUTS.finalTime ~= 0

Mayer = exp(abs(tf-INPUTS.finalTime));

else

Mayer = tf*10;

37 end

radCost = [];

for i = 1:size(rangesqd)

42 Rsqd = ((x-radPos(i,1)).^2+(y-radPos(i,2)).^2);

hVec = [v.*cos(theta),v.*sin(theta)];

rVec = [radPos(i,1)-x,radPos(i,2)-y];

%psi = real(floor(acosd ((hVec (:,1).*rVec (:,1)+hVec (:,2).*rVec...

(:,2))./...

%(sqrt(hVec (:,1) .^2+ hVec (:,2) .^2).*sqrt(rVec (:,1) .^2+...

rVec (:,2) .^2)))));

47 CS = 10* log10 (5);%10* log10(RCS(psi+1,2)); %converting to dB (...

RCS in m^2)

RdB = 10.* log10((Rsqd *1852^2) .^2); %convert range^4 (nm) to dB...

(m)

SNR = radStats(i,1)+radStats(i,2)+radStats(i,3)+radStats(i,4)+...

CS -...

radConst -RdB -radStats(i,5)-radStats(i,6);

if isempty(radCost)

52 radCost = 10.^((SNR -SNRLimit(i))./10);

else

radCost = 10.^((SNR -SNRLimit(i))./10) + radCost;

end

end

57
%gCost = exp ((1./ cos(phi)) -1) -1;

controlCost = sum ([10^ -15 0; 0 10^ -8]*[ transpose(u(:,1))*u(:,1);...

transpose(u(:,2))*u(:,2)]);

Lagrange = radCost + controlCost;

B.5 Five State Differential Algebraic Equation Code

Listing B.5: Appendix1/courseOptDae.m
%-------------------------------------

% BEGIN: function courseOptDae.m

%-------------------------------------

4 function dae = courseOptDae(sol)

global CONST

t = sol.time;

9 x = sol.state (:,1);
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y = sol.state (:,2);

v = sol.state (:,3);

h = sol.state (:,4);

b = sol.state (:,5);

14 u = sol.control;

LF = 1./ cos(b);

xdot = v.*cos(h);

19 ydot = v.*sin(h);

vdot = u(:,1);

hdot = LF .*32.2/6079*3600^2.* sin(b)./v; % Load Factor to nm/hr^2

bdot = u(:,2);

24 pathCon = [];

for i = 1:size(CONST.radarPos)

currentPathCon = (x-CONST.radarPos(i,1)).^2+(y-CONST.radarPos(...

i,2)).^2;

pathCon = [pathCon currentPathCon ];

end

29
dae = [xdot ydot vdot hdot bdot pathCon ];

%-----------------------------------

% END: function courseOptDae.m

34 %-----------------------------------
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